Bayesian Regression Facilitates Quantitative Modeling of Cell Metabolism.
ACS Synth Biol
; 13(4): 1205-1214, 2024 04 19.
Article
em En
| MEDLINE
| ID: mdl-38579163
ABSTRACT
This paper presents Maud, a command-line application that implements Bayesian statistical inference for kinetic models of biochemical metabolic reaction networks. Maud takes into account quantitative information from omics experiments and background knowledge as well as structural information about kinetic mechanisms, regulatory interactions, and enzyme knockouts. Our paper reviews the existing options in this area, presents a case study illustrating how Maud can be used to analyze a metabolic network, and explains the biological, statistical, and computational design decisions underpinning Maud.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Redes Reguladoras de Genes
Idioma:
En
Revista:
ACS Synth Biol
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Dinamarca
País de publicação:
Estados Unidos