Your browser doesn't support javascript.
loading
Dauricine attenuates ovariectomized-induced bone loss and RANKL-induced osteoclastogenesis via inhibiting ROS-mediated NF-κB and NFATc1 activity.
Lin, Xixi; Yuan, Guixin; Yang, Bin; Xie, Chunlan; Zhou, Zhigao; Liu, Ying; Liu, Zhijuan; Wu, Zuoxing; Akimoto, Yoshie; Li, Na; Xu, Ren; Song, Fangming.
Afiliação
  • Lin X; The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laborato
  • Yuan G; The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laborato
  • Yang B; Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361000, China.
  • Xie C; The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China.
  • Zhou Z; Department of Orthopedics, The Second Affiliated Hospital of Shantou University Medical College, Shantou University Medical College, Shantou, Guangdong, 515044, China.
  • Liu Y; The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laborato
  • Liu Z; Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bio Resource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
  • Wu Z; The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laborato
  • Akimoto Y; Iskra Industry Co., Ltd., Tokyo 103-0027, Japan.
  • Li N; The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laborato
  • Xu R; The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian, 361100, China; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laborato
  • Song F; Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361100, China; Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Re
Phytomedicine ; 129: 155559, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38579642
ABSTRACT

BACKGROUND:

Osteoclast plays an important role in maintaining the balance between bone anabolism and bone catabolism. The abnormality of osteoclast is closely related to osteolytic bone diseases such as osteoporosis, rheumatoid arthritis and tumor bone metastasis.

PURPOSE:

We aim to search for natural compound that may suppress osteoclast formation and function. STUDY

DESIGN:

In this study, we assessed the impact of Dauricine (Dau) on the formation and function of osteoclasts in vitro, as well as its potential in preventing bone loss in an ovariectomy mouse model in vivo.

METHODS:

Multiple in vitro experiments were carried out, including osteoclastogenesis, podosomal belt formation, bone resorption assay, RNA-sequencing, real-time quantitative PCR, ROS level detection, surface plasmon resonance assay, luciferase assay and western blot. To verify the effect in vivo, an ovariectomized mouse model (OVX model) was constructed, and bone parameters were measured using micro-CT and histology. Furthermore, metabolomics analysis was performed on blood serum samples from the OVX model.

RESULTS:

In vitro experiments demonstrated that Dau inhibits RANKL-induced osteoclastogenesis, podosomal belt formation, and bone resorption function. RNA-sequencing results revealed that Dau significantly suppresses genes related to osteoclast. Functional enrichment analysis indicated that Dau's inhibition of osteoclasts may be associated with NF-κB signaling pathway and reactive oxygen metabolism pathway. Molecular docking, surface plasmon resonance assay and western blot analysis further confirmed that Dau inhibits RANKL-induced osteoclastogenesis by modulating the ROS/NF-κB/NFATc1 pathway. Moreover, administration of Dau to OVX-induced mice validated its efficacy in treating bone loss disease.

CONCLUSION:

Dau prevents OVX-induced bone loss by inhibiting osteoclast activity and bone resorption, potentially offering a new approach for preventing and treating metabolic bone diseases such as osteoporosis. This study provides innovative insights into the inhibitory effects of Dau in an in vivo OVX model and elucidates the underlying mechanism.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoclastos / Osteogênese / Ovariectomia / NF-kappa B / Espécies Reativas de Oxigênio / Benzilisoquinolinas / Fatores de Transcrição NFATC / Ligante RANK Limite: Animals / Female / Humans Idioma: En Revista: Phytomedicine Assunto da revista: TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoclastos / Osteogênese / Ovariectomia / NF-kappa B / Espécies Reativas de Oxigênio / Benzilisoquinolinas / Fatores de Transcrição NFATC / Ligante RANK Limite: Animals / Female / Humans Idioma: En Revista: Phytomedicine Assunto da revista: TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de publicação: Alemanha