Your browser doesn't support javascript.
loading
Inadvertently enriched cyanobacteria prompted bacterial phosphorus uptake without aeration in a conventional anaerobic/oxic reactor.
Nie, Jiaxiang; Wang, Xiaoxia; Sun, Peng; Yu, Deshuang; Yu, Zhengda; Qiu, Yanling; Zhao, Ji.
Afiliação
  • Nie J; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Wang X; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Sun P; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Yu D; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Yu Z; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Qiu Y; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
  • Zhao J; School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address: zhaoji@qdu.edu.cn.
Sci Total Environ ; 927: 172313, 2024 Jun 01.
Article em En | MEDLINE | ID: mdl-38593871
ABSTRACT
The enhanced biological phosphorus removal (EBPR) process requires alternate anaerobic and aerobic conditions, which are regulated respectively by aeration off and on. Recently, in an ordinary EBPR reactor, an abnormal orthophosphate concentration (PO43--P) decline in the anaerobic stage (namely non-aerated phosphorus uptake) aroused attention. It was not occasionally but occurred in each cycle and lasted for 101 d and shared about 16.63 % in the total P uptake amount. After excluding bio-mineralization and surface re-aeration, indoor light conditions (180 to 260 lx) inducing non-aerated P uptake were confirmed. High-throughput sequencing analysis revealed that cyanobacteria could produce oxygen via photosynthesis and were inhabited inside wall biofilm. The cyanobacteria (Pantalinema and Leptolyngbya ANT.L52.2) were incubated in a feeding transparent silicone hose, entered the reactor along with influent, and outcompeted Chlorophyta, which existed in the inoculum. Eventually, this work deciphered the reason for non-aerated phosphorus uptake and indicated its potential application in reducing CO2 emissions and energy consumption via the cooperation of microalgal-bacterial and biofilm-sludge.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fósforo / Eliminação de Resíduos Líquidos / Cianobactérias / Reatores Biológicos Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fósforo / Eliminação de Resíduos Líquidos / Cianobactérias / Reatores Biológicos Idioma: En Revista: Sci Total Environ Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...