Your browser doesn't support javascript.
loading
Image denoising and model-independent parameterization for IVIM MRI.
Sample, Caleb; Wu, Jonn; Clark, Haley.
Afiliação
  • Sample C; Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, BC, CA, Canada.
  • Wu J; Department of Medical Physics, BC Cancer, Surrey, BC, CA, Canada.
  • Clark H; Department of Radiation Oncology, BC Cancer, Vancouver, BC, CA, Canada.
Phys Med Biol ; 69(10)2024 Apr 30.
Article em En | MEDLINE | ID: mdl-38604177
ABSTRACT
Objective. To improve intravoxel incoherent motion imaging (IVIM) magnetic resonance Imaging quality using a new image denoising technique and model-independent parameterization of the signal versusb-value curve.Approach. IVIM images were acquired for 13 head-and-neck patients prior to radiotherapy. Post-radiotherapy scans were also acquired for five of these patients. Images were denoised prior to parameter fitting using neural blind deconvolution, a method of solving the ill-posed mathematical problem of blind deconvolution using neural networks. The signal decay curve was then quantified in terms of several area under the curve (AUC) parameters. Improvements in image quality were assessed using blind image quality metrics, total variation (TV), and the correlations between parameter changes in parotid glands with radiotherapy dose levels. The validity of blur kernel predictions was assessed by the testing the method's ability to recover artificial 'pseudokernels'. AUC parameters were compared with monoexponential, biexponential, and triexponential model parameters in terms of their correlations with dose, contrast-to-noise (CNR) around parotid glands, and relative importance via principal component analysis.Main results. Image denoising improved blind image quality metrics, smoothed the signal versusb-value curve, and strengthened correlations between IVIM parameters and dose levels. Image TV was reduced and parameter CNRs generally increased following denoising.AUCparameters were more correlated with dose and had higher relative importance than exponential model parameters.Significance. IVIM parameters have high variability in the literature and perfusion-related parameters are difficult to interpret. Describing the signal versusb-value curve with model-independent parameters like theAUCand preprocessing images with denoising techniques could potentially benefit IVIM image parameterization in terms of reproducibility and functional utility.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética / Razão Sinal-Ruído Limite: Humans Idioma: En Revista: Phys Med Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento por Ressonância Magnética / Razão Sinal-Ruído Limite: Humans Idioma: En Revista: Phys Med Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá