Your browser doesn't support javascript.
loading
Protein quality control systems in the endoplasmic reticulum and the cytosol coordinately prevent alachlor-induced proteotoxic stress in Saccharomyces cerevisiae.
Limcharoensuk, Tossapol; Chusuth, Phakawat; Utaisincharoen, Pongsak; Auesukaree, Choowong.
Afiliação
  • Limcharoensuk T; Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
  • Chusuth P; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
  • Utaisincharoen P; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
  • Auesukaree C; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand. Electronic address: choowong.
J Hazard Mater ; 471: 134270, 2024 Jun 05.
Article em En | MEDLINE | ID: mdl-38640676
ABSTRACT
Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to ß subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Complexo de Endopeptidases do Proteassoma / Retículo Endoplasmático / Resposta a Proteínas não Dobradas / Herbicidas / Acetamidas Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Tailândia País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Complexo de Endopeptidases do Proteassoma / Retículo Endoplasmático / Resposta a Proteínas não Dobradas / Herbicidas / Acetamidas Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Tailândia País de publicação: Holanda