Your browser doesn't support javascript.
loading
Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites.
Bowling, Paige E; Dasgupta, Saswata; Herbert, John M.
Afiliação
  • Bowling PE; Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States.
  • Dasgupta S; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
  • Herbert JM; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
J Chem Inf Model ; 64(9): 3912-3922, 2024 May 13.
Article em En | MEDLINE | ID: mdl-38648614
ABSTRACT
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria Quântica / Vibração / Domínio Catalítico Idioma: En Revista: J Chem Inf Model / J. chem. inf. model / Journal of chemical information and modeling Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria Quântica / Vibração / Domínio Catalítico Idioma: En Revista: J Chem Inf Model / J. chem. inf. model / Journal of chemical information and modeling Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos