Your browser doesn't support javascript.
loading
Evaluation of the effect of precursor ratios on the electrochemical performances of binder-free NiMn-phosphate electrodes for supercapattery.
Gerard, Ong; Ramesh, S; Ramesh, K; Numan, Arshid; Norhaffis Mustafa, Muhammad; Khalid, Mohammad; Ramesh, S; Tiong, S K.
Afiliação
  • Gerard O; Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia.
  • Ramesh S; Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Saveetha School of Engineering, Institute of Medical and Technical Science, Saveetha University, Chennai 602105, Tamil Nadu, India. Electronic
  • Ramesh K; Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
  • Numan A; Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia. Electronic address: numan.arshed@yahoo.com.
  • Norhaffis Mustafa M; Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
  • Khalid M; Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Uttaranchal University, Dehradun 248007, Uttarakhand, India; Manipal Institute of Tech
  • Ramesh S; Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia; Centre of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
  • Tiong SK; Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia. Electronic address: siehkiong@uniten.edu.my.
J Colloid Interface Sci ; 667: 585-596, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38657542
ABSTRACT
Binary metal phosphate electrodes have been widely studied for energy storage applications due to the synergistic effects of two different transition elements that able to provide better conductivity and stability. Herein, the battery-type binder-free nickel-manganese phosphate (NiMn-phosphate) electrodes were fabricated with different NiMn precursor ratios via microwave-assisted hydrothermal technique for 5 min at 90 °C. Overall, NiMn3P electrode (NiMn = 13) showed an outstanding electrochemical performance, displaying the highest specific (areal) capacity at 3 A/g of 1262.4 C/g (0.44 C/cm2), and the smallest charge transfer resistance of 108.8 Ω. The enhanced performance of NiMn3P electrode can be ascribed to the fully grown amorphous nature and small-sized flake and flower structures of NiMn3P electrode material on the nickel foam (NF) surface. This configuration offered a higher number of active sites and a larger exposed area, facilitating efficient electrochemical reactions with the electrolyte. Consequently, the NiMn3P//AC electrode combination was chosen to further investigate its performance in supercapattery. The NiMn3P//AC supercapattery exhibited remarkable energy density of 105.4 Wh/kg and excellent cyclic stability with 84.7% retention after 3000 cycles. These findings underscored the superior electrochemical performance of the battery-type binder-free NiMn3P electrode, and highlight its potential for enhancing the overall performance of supercapattery.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Malásia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Malásia País de publicação: Estados Unidos