Your browser doesn't support javascript.
loading
Assessment of bone ingrowth around beaded coated tibial implant for total ankle replacement using mechanoregulatory algorithm.
Mukherjee, Kaushik; Ghosh, Rajesh.
Afiliação
  • Minku; Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
  • Mukherjee K; Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
  • Ghosh R; Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India. Electronic address: rajesh@iitmandi.ac.in.
Comput Biol Med ; 175: 108551, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38703546
ABSTRACT
The long-term performance of porous coated tibial implants for total ankle replacement (TAR) primarily depends on the extent of bone ingrowth at the bone-implant interface. Although attempts were made for primary fixation for immediate post-operative stability, no investigation was conducted on secondary fixation. The aim of this study is to assess bone ingrowth around the porous beaded coated tibial implant for TAR using a mechanoregulatory algorithm. A realistic macroscale finite element (FE) model of the implanted tibia was developed based on computer tomography (CT) data to assess implant-bone micromotions and coupled with microscale FE models of the implant-bone interface to predict bone ingrowth around tibial implant for TAR. The macroscale FE model was subjected to three near physiological loading conditions to evaluate the site-specific implant-bone micromotion, which were then incorporated into the corresponding microscale model to mimic the near physiological loading conditions. Results of the study demonstrated that the implant experienced tangential micromotion ranged from 0 to 71 µm with a mean of 3.871 µm. Tissue differentiation results revealed that bone ingrowth across the implant ranged from 44 to 96 %, with a mean of around 70 %. The average Young's modulus of the inter-bead tissue layer varied from 1444 to 4180 MPa around the different regions of the implant. The analysis postulates that when peak micromotion touches 30 µm around different regions of the implant, it leads to pronounced fibrous tissues on the implant surface. The highest amount of bone ingrowth was observed in the central regions, and poor bone ingrowth was seen in the anterior parts of the implant, which indicate improper osseointegration around this region. This macro-micro mechanical FE framework can be extended to improve the implant design to enhance the bone ingrowth and in future to develop porous lattice-structured implants to predict and enhance osseointegration around the implant.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tíbia / Algoritmos / Análise de Elementos Finitos / Artroplastia de Substituição do Tornozelo Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tíbia / Algoritmos / Análise de Elementos Finitos / Artroplastia de Substituição do Tornozelo Limite: Humans Idioma: En Revista: Comput Biol Med Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia