Your browser doesn't support javascript.
loading
A comparative evaluation of biochar and Paenarthrobacter sp. AT5 for reducing atrazine risks to soybeans and bacterial communities in black soil.
Harindintwali, Jean Damascene; He, Chao; Wen, Xin; Liu, Yu; Wang, Mingyi; Fu, Yuhao; Xiang, Leilei; Jiang, Jiandong; Jiang, Xin; Wang, Fang.
Afiliação
  • Harindintwali JD; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • He C; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
  • Wen X; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Liu Y; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wang M; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Geographical Sciences, Nantong University, Nantong, 226001, China.
  • Fu Y; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Xiang L; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Jiang J; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
  • Jiang X; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
  • Wang F; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074, Aachen, Ge
Environ Res ; 252(Pt 4): 119055, 2024 Jul 01.
Article em En | MEDLINE | ID: mdl-38710429
ABSTRACT
Application of biochar and inoculation with specific microbial strains offer promising approaches for addressing atrazine contamination in agricultural soils. However, determining the optimal method necessitates a comprehensive understanding of their effects under similar conditions. This study aimed to evaluate the effectiveness of biochar and Paenarthrobacter sp. AT5, a bacterial strain known for its ability to degrade atrazine, in reducing atrazine-related risks to soybean crops and influencing bacterial communities. Both biochar and strain AT5 significantly improved atrazine degradation in both planted and unplanted soils, with the most substantial reduction observed in soils treated with strain AT5. Furthermore, bioaugmentation with strain AT5 outperformed biochar in enhancing soybean growth, photosynthetic pigments, and antioxidant defenses. While biochar promoted higher soil bacterial diversity compared to strain AT5, the latter selectively enriched specific bacterial populations. Additionally, soil inoculated with strain AT5 displayed a notable increase in the abundance of key genes associated with atrazine degradation (trzN, atzB, and atzC), surpassing the effects observed with biochar addition, thus highlighting its effectiveness in mitigating atrazine risks in soil.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Atrazina / Microbiologia do Solo / Poluentes do Solo / Glycine max / Biodegradação Ambiental / Carvão Vegetal / Herbicidas Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Atrazina / Microbiologia do Solo / Poluentes do Solo / Glycine max / Biodegradação Ambiental / Carvão Vegetal / Herbicidas Idioma: En Revista: Environ Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China