Your browser doesn't support javascript.
loading
Constraints on the emergence of RNA through non-templated primer extension with mixtures of potentially prebiotic nucleotides.
Jia, Xiwen; Zhang, Stephanie J; Zhou, Lijun; Szostak, Jack W.
Afiliação
  • Jia X; Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
  • Zhang SJ; Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
  • Zhou L; Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA.
  • Szostak JW; Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
Nucleic Acids Res ; 52(10): 5451-5464, 2024 Jun 10.
Article em En | MEDLINE | ID: mdl-38726871
ABSTRACT
The emergence of RNA on the early Earth is likely to have been influenced by chemical and physical processes that acted to filter out various alternative nucleic acids. For example, UV photostability is thought to have favored the survival of the canonical nucleotides. In a recent proposal for the prebiotic synthesis of the building blocks of RNA, ribonucleotides share a common pathway with arabino- and threo-nucleotides. We have therefore investigated non-templated primer extension with 2-aminoimidazole-activated forms of these alternative nucleotides to see if the synthesis of the first oligonucleotides might have been biased in favor of RNA. We show that non-templated primer extension occurs predominantly through 5'-5' imidazolium-bridged dinucleotides, echoing the mechanism of template-directed primer extension. Ribo- and arabino-nucleotides exhibited comparable rates and yields of non-templated primer extension, whereas threo-nucleotides showed lower reactivity. Competition experiments confirmed the bias against the incorporation of threo-nucleotides. The incorporation of an arabino-nucleotide at the end of the primer acts as a chain terminator and blocks subsequent extension. These biases, coupled with potentially selective prebiotic synthesis, and the templated copying that is known to favour the incorporation of ribonucleotides, provide a plausible model for the effective exclusion of arabino- and threo-nucleotides from primordial oligonucleotides.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ribonucleotídeos / RNA / Nucleotídeos Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ribonucleotídeos / RNA / Nucleotídeos Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido