Your browser doesn't support javascript.
loading
The role of semaphorin 3A on chondrogenic differentiation.
Tsuboi, Eri; Asakawa, Yuki; Hirose, Naoto; Yanoshita, Makoto; Sumi, Chikako; Takano, Mami; Onishi, Azusa; Nishiyama, Sayuri; Kubo, Naoki; Kita, Daiki; Tanimoto, Kotaro.
Afiliação
  • Tsuboi E; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
  • Asakawa Y; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
  • Hirose N; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan. hirose@hiroshima-u.ac.jp.
  • Yanoshita M; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
  • Sumi C; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
  • Takano M; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
  • Onishi A; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
  • Nishiyama S; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
  • Kubo N; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
  • Kita D; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
  • Tanimoto K; Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
In Vitro Cell Dev Biol Anim ; 60(6): 609-615, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38727898
ABSTRACT
Osteoblast-derived semaphorin3A (Sema3A) has been reported to be involved in bone protection, and Sema3A knockout mice have been reported to exhibit chondrodysplasia. From these reports, Sema3A is considered to be involved in chondrogenic differentiation and skeletal formation, but there are many unclear points about its function and mechanism in chondrogenic differentiation. This study investigated the pharmacological effects of Sema3A in chondrogenic differentiation. The amount of Sema3A secreted into the culture supernatant was measured using an enzyme-linked immunosorbent assay. The expression of chondrogenic differentiation-related factors, such as Type II collagen (COL2A1), Aggrecan (ACAN), hyaluronan synthase 2 (HAS2), SRY-box transcription factor 9 (Sox9), Runt-related transcription factor 2 (Runx2), and Type X collagen (COL10A1) in ATDC5 cells treated with Sema3A (1,10 and 100 ng/mL) was examined using real-time reverse transcription polymerase chain reaction. Further, to assess the deposition of total glycosaminoglycans during chondrogenic differentiation, ATDC5 cells were stained with Alcian Blue. Moreover, the amount of hyaluronan in the culture supernatant was measured by enzyme-linked immunosorbent assay. The addition of Sema3A to cultured ATDC5 cells increased the expression of Sox9, Runx2, COL2A1, ACAN, HAS2, and COL10A1 during chondrogenic differentiation. Moreover, it enhanced total proteoglycan and hyaluronan synthesis. Further, Sema3A was upregulated in the early stages of chondrogenic differentiation, and its secretion decreased later. Sema3A increases extracellular matrix production and promotes chondrogenic differentiation. To the best of our knowledge, this is the first study to demonstrate the role of Sema3A on chondrogenic differentiation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Condrogênese / Semaforina-3A Limite: Animals Idioma: En Revista: In Vitro Cell Dev Biol Anim Assunto da revista: BIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diferenciação Celular / Condrogênese / Semaforina-3A Limite: Animals Idioma: En Revista: In Vitro Cell Dev Biol Anim Assunto da revista: BIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão País de publicação: Alemanha