Your browser doesn't support javascript.
loading
Targeting SAT1 prevents osteoporosis through promoting osteoclast apoptosis.
Jin, Zhichun; Xu, Hao; Sun, Xueyu; Yan, Bin; Wang, Lin.
Afiliação
  • Jin Z; Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Provinc
  • Xu H; Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Provinc
  • Sun X; Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Provinc
  • Yan B; Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Provinc
  • Wang L; Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Provinc
Biomed Pharmacother ; 175: 116732, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38739990
ABSTRACT
Osteoporosis is a systemic bone disease characterized by decreased bone mass that is tightly regulated by the coordinated actions of osteoclasts and osteoblasts. Apoptosis as a precise programmed cell death involves a cascade of gene expression events which are mechanistically linked to the regulation of bone metabolism. Nevertheless, the critical biomolecules involved in regulating cell apoptosis in osteoporosis remain unknown. To gain a deeper insight into the relationship between apoptosis and osteoporosis, this study integrated the sequencing results of human samples and using a machine learning workflow to overcome the limitations of a single study. Among all immune cell populations, we assessed the apoptotic level and portrayed the distinct subtypes and lineage differentiation of monocytic cells in osteoporotic tissues. Osteoclasts expressed a higher level of Spermidine/spermine-N1-Acetyltransferase1 (SAT1) during osteoclastogenesis which prevented osteoclasts apoptosis and facilitate osteoporosis progression. In addition, Berenil, one potent SAT1 inhibitor, increased osteoclast apoptosis and reversed the bone loss in the femurs of a murine ovariectomy model. In summary, Berenil promotes osteoclast apoptosis, inhibits the bone resorption and improves the abnormal bone structure in vitro and in vivo models by targeting SAT1, demonstrating its potential as a precise therapeutic strategy for clinical osteoporosis treatment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoclastos / Osteoporose / Acetiltransferases / Apoptose Limite: Animals / Female / Humans Idioma: En Revista: Biomed Pharmacother Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoclastos / Osteoporose / Acetiltransferases / Apoptose Limite: Animals / Female / Humans Idioma: En Revista: Biomed Pharmacother Ano de publicação: 2024 Tipo de documento: Article