Your browser doesn't support javascript.
loading
Diamond-lattice photonic crystals assembled from DNA origami.
Posnjak, Gregor; Yin, Xin; Butler, Paul; Bienek, Oliver; Dass, Mihir; Lee, Seungwoo; Sharp, Ian D; Liedl, Tim.
Afiliação
  • Posnjak G; Faculty of Physics and CeNS, Ludwig-Maximilian-University Munich, München, 80539 Bayern, Germany.
  • Yin X; Faculty of Physics and CeNS, Ludwig-Maximilian-University Munich, München, 80539 Bayern, Germany.
  • Butler P; Walter Schottky Institute, Technical University of Munich, Garching bei München, 85748 Bayern, Germany.
  • Bienek O; Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching bei München, 85748 Bayern, Germany.
  • Dass M; Walter Schottky Institute, Technical University of Munich, Garching bei München, 85748 Bayern, Germany.
  • Lee S; Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching bei München, 85748 Bayern, Germany.
  • Sharp ID; Faculty of Physics and CeNS, Ludwig-Maximilian-University Munich, München, 80539 Bayern, Germany.
  • Liedl T; Department of Integrative Energy Engineering (College of Engineering), KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
Science ; 384(6697): 781-785, 2024 May 17.
Article em En | MEDLINE | ID: mdl-38753795
ABSTRACT
Colloidal self-assembly allows rational design of structures on the micrometer and submicrometer scale. One architecture that can generate complete three-dimensional photonic bandgaps is the diamond cubic lattice, which has remained difficult to realize at length scales comparable with the wavelength of visible or ultraviolet light. In this work, we demonstrate three-dimensional photonic crystals self-assembled from DNA origami that act as precisely programmable patchy colloids. Our DNA-based nanoscale tetrapods crystallize into a rod-connected diamond cubic lattice with a periodicity of 170 nanometers. This structure serves as a scaffold for atomic-layer deposition of high-refractive index materials such as titanium dioxide, yielding a tunable photonic bandgap in the near-ultraviolet.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Science Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Estados Unidos