Your browser doesn't support javascript.
loading
Face-to-face Assembly Strategy of Au Nanocubes: Induced Generation of Broad Hotspot Regions for SERS-Fluorescence Dual-Signal Detection of Intracellular miRNAs.
Wang, Jiwei; Ma, Shuo; Ge, Kezhen; Xu, Ran; Shen, Fuzhi; Gao, Xun; Yao, Yuming; Chen, Yaya; Chen, Yuxin; Gao, Fenglei; Wu, Guoqiu.
Afiliação
  • Wang J; Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
  • Ma S; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
  • Ge K; Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
  • Xu R; Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
  • Shen F; Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
  • Gao X; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
  • Yao Y; Department of Laboratory Medicine, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
  • Chen Y; The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
  • Chen Y; Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
  • Gao F; Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
  • Wu G; Center of Clinical Laboratory Medicine, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, China.
Anal Chem ; 96(22): 8922-8931, 2024 06 04.
Article em En | MEDLINE | ID: mdl-38758935
ABSTRACT
While designing anisotropic noble metal nanoparticles (NPs) can enhance the signal intensity of Raman dyes, more sensitive surface-enhanced Raman scattering (SERS) probes can be designed by oriented self-assembly of noble metal nanomaterials into dimers or higher-order nanoclusters. In this study, we engineered a self-assembly strategy in living cells for real-time fluorescence and SERS dual-channel detection of intracellular microRNAs (miRNAs), using Mg2+-dependent 8-17E DNAzyme sequences as the driving motors, gold nanocubes (AuNCs) as the driver components, and three-branched double-stranded DNA as the linking tool. The assembly selects adenine in DNA as a reporter molecule, simplifying the labeling process of Raman reporter molecules and reducing the synthesis process. In addition, adenine is stably distributed between the faces of AuNCs and the wide hotspot region gives good reproducibility of the adenine SERS signal. In this strategy, the SERS channel was consistently stable and more sensitive compared to the fluorescence channel. Among them, the detection limit of the SERS channel was 2.1 pM and the coefficient of variation was 1.26% in the in vitro liquid phase and 1.49% in MCF-7 cells. The strategy successfully achieved accurate tracking and quantification of miRNA-21 in cancer cells, showing good reproducibility in complex samples as well as cells. The reported strategy provides ideas for exploring intracellular specific triggering of nanoparticles for precise control of self-assembly.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise Espectral Raman / MicroRNAs / Nanopartículas Metálicas / Ouro Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise Espectral Raman / MicroRNAs / Nanopartículas Metálicas / Ouro Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos