Your browser doesn't support javascript.
loading
Facile design of structurally robust, highly conductive and well-flexible hybrid film based on MXene, cellulose nanofiber and poly (3,4-ethylenedioxythiphoenes):polystyrene sulfonate for supercapacitors.
Xu, Hanping; Zhu, Jingqiao; Zhao, Tao; Ni, Siyang; Yang, Yujia; Hu, Qiangli; Jin, Xiaojuan.
Afiliação
  • Xu H; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China.
  • Zhu J; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China.
  • Zhao T; China National Pulp and Paper Research Institute Co., Ltd, Sinolight Specialty Fiber Products Co., Ltd., Langfang, Hebei Province, 065000, China.
  • Ni S; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China.
  • Yang Y; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China.
  • Hu Q; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China.
  • Jin X; Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, 35 Qinghua East Road, Haidian, Beijing 100083, China. Electronic address: jxj0
J Colloid Interface Sci ; 670: 163-173, 2024 Sep 15.
Article em En | MEDLINE | ID: mdl-38761569
ABSTRACT
Robust, conductive and flexible electrode materials have been the focus of attention in portable, wearable electronics. However, it is still a significant challenge to achieve synergistic development of multiple properties simultaneously. Herein, we propose a combination of microscale design and nanostructures strategy to prepare MXene/cellulose nanofiber-poly (3,4-ethylenedioxythiphoenes)polystyrene sulfonate (Ti3C2Tx/CNF-PEDOTPSS, TC-P) hybrid film by a simple in-situ polymerization and vacuum filtration process. CNF serves as the supporting skeleton of PEDOTPSS, effectively mitigating its self-aggregation and structural deformation due to the expansion/contraction of the polymer network. And the CNF-PEDOTPSS composite is capable to open up the interlayer space of Ti3C2Tx, which reduces the self-stacking of Ti3C2Tx nanosheets. The strong interactions among the three components enable the hybrid film electrode to possess both flexibility and high electrochemical properties. As a result, the film electrode exhibits a remarkable tensile strength of 77.4 MPa and an excellent conductivity of 162.5 S cm-1, as well as an outstanding areal specific capacitance of 896 mF cm-2 at 4 mA cm-2. Moreover, the assembled symmetric supercapacitor (SSC) device displays a large areal energy density of 62 µWh cm-2 at a power density of 800 µW cm-2 and demonstrates a long cycle life with 85.1 % capacitance retention after 10,000 GCD cycles. This study provides an effective strategy to balance mechanical flexibility and electrochemical properties, providing an inspiration to prepare flexible electrodes that are widely applied in a new generation of portable, wearable electronics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Colloid Interface Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China
...