Your browser doesn't support javascript.
loading
Preparation of tomato peel pomace powder/polylactic acid foams under supercritical CO2 conditions: Improvements in cell structure and foaming behavior.
Du, Jianghua; Yang, Hongwei; Zhao, Xueping.
Afiliação
  • Du J; School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Polymer Materials & Manufacturing Technology, North Minzu University, Yinchuan 750021, China. Electronic address: bmdcl21@163.com.
  • Yang H; School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China.
  • Zhao X; School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China.
Int J Biol Macromol ; 270(Pt 2): 132480, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38763242
ABSTRACT
Polylactic acid (PLA) is an eco-friendly material that can help address the problems of petroleum depletion and pollution. Blending renewable biomass materials with PLA to create composite foams with a tunable pore structure, superior performance, and low cost is a green technique for improving the pore structure and mechanical characteristics of single PLA foams. PLA/TP composites were created using melted tomato peel pomace powder (TP), which has a lamellar structure, as a reinforcing agent. Then, the relationship between the vesicle structure, morphology, and properties of the PLA/TP composite foams produced through supercritical CO2 intermittent foaming were investigated. The findings revealed that TP considerably enhanced the rheological characteristics and crystalline behavior of PLA. The PLA/TP composite foam had a better cell structure, compression characteristics, and wettability than pure PLA. The expansion ratio of the PLA/TP composite could reach 18.8, and its thermal conductivity decreased from 174.2 mW/m·K at 100 °C to 57.8 mW/m·K at 120 °C. Furthermore, annealing before foaming decreased the average composite foam blister size from 110.09 to 66.53 µm, and the annealing process also improved compression performance. This study contributes to solving environmental difficulties and creating PLA foams with controlled bubble structures, uniform bubble sizes, and outstanding overall performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Pós / Dióxido de Carbono / Solanum lycopersicum Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Pós / Dióxido de Carbono / Solanum lycopersicum Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2024 Tipo de documento: Article País de publicação: Holanda