Your browser doesn't support javascript.
loading
Revealing the mechanism of the lutein protective function of epicatechin-fructan glycosylated soybean protein isolate.
Duan, Yunhan; Cao, Yanping; Qi, Lijun; Shaojia, Wang; Gao, Wei.
Afiliação
  • Duan Y; Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, 100048, China.
  • Cao Y; Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, 100048, China.
  • Qi L; Chenguang Biotech Group Limited Co., Ltd, Handan, 057250, China.
  • Shaojia W; Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing, 100048, China.
  • Gao W; Chenguang Biotech Group Limited Co., Ltd, Handan, 057250, China.
Curr Res Food Sci ; 8: 100750, 2024.
Article em En | MEDLINE | ID: mdl-38764979
ABSTRACT
Lutein possesses various physiological activities but is susceptible to light degradation, thermal degradation, and oxidative degradation. As such, protecting the activity of lutein-based products using natural extracts has become a current research. In this study, lutein was protected by complexing inulin-type fructan (ITF), soybean protein isolate (SPI), and epicatechin (EC), and the protection mechanism of epicatechin-fructan glycosylated soybean protein isolate (EC-GSPI) toward lutein was elucidated comprehensively. The results showed that the addition of EC delayed the degradation of lutein. The results of light stability experiments showed that increased EC significantly enhanced the storage time of the GSPI-Lutein system from 4 to 13 days. Additionally, the effect of EC on glycosylated soybean 7S globulin (G7S) and glycosylated soybean 11S globulin (G11S) was assessed. The light stability of G11S-Lutein and G7S-Lutein after the addition of EC was from G11S > G7S → G7S > G11S. Furthermore, the proteins purified from SPI interacted differently with EC and ITF, with soybean 7S globulin (7S) mainly interacting with EC and soybean 11S globulin (11S) mainly interacting with ITF. EC-GSPI-Lutein exhibited a good protective effect, probably due to the occurrence of hygrothermal Maillard between ITF and 11S, providing a porous structure for lutein storage. At the same time, the binding of EC to 7S significantly enhanced the antioxidant property of the solution and the stability of the protein secondary structure, thereby prolonging the storage time of lutein.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Curr Res Food Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Curr Res Food Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Holanda