Modulating monocyte-derived macrophage polarization in cerebral ischemic injury with hyperglycemia.
Exp Neurol
; 378: 114824, 2024 Aug.
Article
em En
| MEDLINE
| ID: mdl-38777250
ABSTRACT
Ischemic stroke (IS), characterized by high mortality rate, occurs owing to diminished or blocked blood flow to the brain. Hyperglycemia (HG) is a major contributor to the risk of IS. HG induces augmented oxidative stress and Blood-Brain Barrier breakdown, which increases the influx of blood-derived myeloid cells into the brain parenchyma. In cerebral ischemia, infiltrating monocytes undergo differentiation into pro-inflammatory or anti-inflammatory macrophages, having a large effect on outcomes of ischemic stroke. In addition, interleukin-4 (IL-4) and interleukin-13 (IL-13) engage in post-ischemia repair by polarizing the infiltrating monocytes into an anti-inflammatory phenotype. In this study, we aimed to determine the effect of phenotypic polarization of monocyte-derived macrophages on the prognosis of IS with HG (HG-IS). We first established a hyperglycemic mouse model using streptozotocin (150 mg/kg) and induced transient middle cerebral artery occlusion. We observed that blood-brain barrier permeability increased in HG-IS mice, as per two-photon live imaging and Evans blue staining. We also confirmed the increased infiltration of monocyte-derived macrophages and the downregulation of anti-inflammatory macrophages related to tissue remodeling after inflammation in HG-IS mice through immunohistochemistry, western blotting, and flow cytometry. We observed phenotypic changes in monocyte-derived macrophages, alleviated infarct volume, and improved motor function in HG-IS mice treated with IL-4 and IL-13. These findings suggest that the modulation of phenotypic changes in monocyte-derived macrophages following IS in hyperglycemic mice may influence ischemic recovery.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Isquemia Encefálica
/
Hiperglicemia
/
Macrófagos
/
Camundongos Endogâmicos C57BL
Limite:
Animals
Idioma:
En
Revista:
Exp Neurol
Ano de publicação:
2024
Tipo de documento:
Article
País de publicação:
Estados Unidos