Your browser doesn't support javascript.
loading
Electric recycling of Portland cement at scale.
Dunant, Cyrille F; Joseph, Shiju; Prajapati, Rohit; Allwood, Julian M.
Afiliação
  • Dunant CF; Department of Engineering, University of Cambridge, Cambridge, UK. cyrille.dunant@gmail.com.
  • Joseph S; Department of Engineering, University of Cambridge, Cambridge, UK.
  • Prajapati R; Department of Engineering, University of Cambridge, Cambridge, UK.
  • Allwood JM; Department of Engineering, University of Cambridge, Cambridge, UK. jma42@cam.ac.uk.
Nature ; 629(8014): 1055-1061, 2024 May.
Article em En | MEDLINE | ID: mdl-38778099
ABSTRACT
Cement production causes 7.5% of global anthropogenic CO2 emissions, arising from limestone decarbonation and fossil-fuel combustion1-3. Current decarbonation strategies include substituting Portland clinker with supplementary materials, but these mainly arise in emitting processes, developing alternative binders but none yet promises scale, or adopting carbon capture and storage that still releases some emissions4-8. However, used cement is potentially an abundant, decarbonated feedstock. Here we show that recovered cement paste can be reclinkered if used as a partial substitute for the lime-dolomite flux used in steel recycling nowadays. The resulting slag can meet existing specifications for Portland clinker and can be blended effectively with calcined clay and limestone. The process is sensitive to the silica content of the recovered cement paste, and silica and alumina that may come from the scrap, but this can be adjusted easily. We show that the proposed process may be economically competitive, and if powered by emissions-free electricity, can lead to zero emissions cement while also reducing the emissions of steel recycling by reducing lime flux requirements. The global supply of scrap steel for recycling may treble by 2050, and it is likely that more slag can be made per unit of steel recycled. With material efficiency in construction9,10, future global cement requirements could be met by this route.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nature Ano de publicação: 2024 Tipo de documento: Article País de publicação: Reino Unido