Your browser doesn't support javascript.
loading
Unveiling the Mechanism of Plasma-Catalyzed Oxidation of Methane to C2+ Oxygenates over Cu/UiO-66-NH2.
Qi, Chong; Bi, Yifu; Wang, Yaolin; Yu, Hong; Tian, Yuanyu; Zong, Peijie; Zhang, Qinhua; Zhang, Haonan; Wang, Mingqing; Xing, Tao; Wu, Mingbo; Tu, Xin; Wu, Wenting.
Afiliação
  • Qi C; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, P. R. China.
  • Bi Y; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, P. R. China.
  • Wang Y; Sinopec Qingdao Refining & Chemical CO., LTD, Qingdao 266500, P. R. China.
  • Yu H; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
  • Tian Y; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, P. R. China.
  • Zong P; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, P. R. China.
  • Zhang Q; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, P. R. China.
  • Zhang H; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, P. R. China.
  • Wang M; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, P. R. China.
  • Xing T; National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, ShanDong Energy Group CO., LTD, Jinan 250101, P. R. China.
  • Wu M; National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, ShanDong Energy Group CO., LTD, Jinan 250101, P. R. China.
  • Tu X; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Institute of New Energy, China University of Petroleum (East China), Qingdao 266580, P. R. China.
  • Wu W; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
ACS Catal ; 14(10): 7707-7716, 2024 May 17.
Article em En | MEDLINE | ID: mdl-38779184
ABSTRACT
Nonthermal plasma (NTP) offers the potential for converting CH4 with CO2 into liquid products under mild conditions, but controlling liquid selectivity and manipulating intermediate species remain significant challenges. Here, we demonstrate the effectiveness of the Cu/UiO-66-NH2 catalyst in promising the conversion of CH4 and CO2 into oxygenates within a dielectric barrier discharge NTP reactor under ambient conditions. The 10% Cu/UiO-66-NH2 catalyst achieved an impressive 53.4% overall liquid selectivity, with C2+ oxygenates accounting for ∼60.8% of the total liquid products. In situ plasma-coupled Fourier-transform infrared spectroscopy (FTIR) suggests that Cu facilitates the cleavage of surface adsorbed COOH species (*COOH), generating *CO and enabling its migration to the surface of Cu particles. This surface-bound *CO then undergoes C-C coupling and hydrogenation, leading to ethanol production. Further analysis using CO diffuse reflection FTIR and 1H nuclear magnetic resonance spectroscopy indicates that in situ generated surface *CO is more effective than gas-phase CO (g) in promoting C-C coupling and C2+ liquid formation. This work provides valuable mechanistic insights into C-C coupling and C2+ liquid production during plasma-catalytic CO2 oxidation of CH4 under ambient conditions. These findings hold broader implications for the rational design of more efficient catalysts for this reaction, paving the way for advancements in sustainable fuel and chemical production.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Catal Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Catal Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos