Your browser doesn't support javascript.
loading
Taenia solium cysticerci's extracellular vesicles Attenuate the AKT/mTORC1 pathway for Alleviating DSS-induced colitis in a murine model.
Rawat, Suraj Singh; Keshri, Anand Kumar; Arora, Naina; Kaur, Rimanpreet; Mishra, Amit; Kumar, Rajiv; Prasad, Amit.
Afiliação
  • Rawat SS; School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
  • Keshri AK; School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
  • Arora N; School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
  • Kaur R; School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
  • Mishra A; Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
  • Kumar R; CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
  • Prasad A; School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
J Extracell Vesicles ; 13(5): e12448, 2024 May.
Article em En | MEDLINE | ID: mdl-38779712
ABSTRACT
The excretory-secretory proteome plays a pivotal role in both intercellular communication during disease progression and immune escape mechanisms of various pathogens including cestode parasites like Taenia solium. The cysticerci of T. solium causes infection in the central nervous system known as neurocysticercosis (NCC), which affects a significant population in developing countries. Extracellular vesicles (EVs) are 30-150-nm-sized particles and constitute a significant part of the secretome. However, the role of EV in NCC pathogenesis remains undetermined. Here, for the first time, we report that EV from T. solium larvae is abundant in metabolites that can negatively regulate PI3K/AKT pathway, efficiently internalized by macrophages to induce AKT and mTOR degradation through auto-lysosomal route with a prominent increase in the ubiquitination of both proteins. This results in less ROS production and diminished bacterial killing capability among EV-treated macrophages. Due to this, both macro-autophagy and caspase-linked apoptosis are upregulated, with a reduction of the autophagy substrate sequestome 1. In summary, we report that T. solium EV from viable cysts attenuates the AKT-mTOR pathway thereby promoting apoptosis in macrophages, and this may exert immunosuppression during an early viable stage of the parasite in NCC, which is primarily asymptomatic. Further investigation on EV-mediated immune suppression revealed that the EV can protect the mice from DSS-induced colitis and improve colon architecture. These findings shed light on the previously unknown role of T. solium EV and the therapeutic role of their immune suppression potential.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Colite / Taenia solium / Proteínas Proto-Oncogênicas c-akt / Vesículas Extracelulares / Alvo Mecanístico do Complexo 1 de Rapamicina Limite: Animals Idioma: En Revista: J Extracell Vesicles Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Colite / Taenia solium / Proteínas Proto-Oncogênicas c-akt / Vesículas Extracelulares / Alvo Mecanístico do Complexo 1 de Rapamicina Limite: Animals Idioma: En Revista: J Extracell Vesicles Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Índia País de publicação: Estados Unidos