Your browser doesn't support javascript.
loading
Photoinduced Low-Valent Zirconium Catalysis for Cross-Electrophile Coupling of Ethers.
Guo, Ping; Song, Xuedong; Huang, Banruo; Zhang, Ruixue; Zhao, Jie.
Afiliação
  • Guo P; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Song X; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Huang B; Department of Chemistry, University of California, Berkeley, California, 94720, United States.
  • Zhang R; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
  • Zhao J; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, E
Angew Chem Int Ed Engl ; 63(32): e202405449, 2024 Aug 05.
Article em En | MEDLINE | ID: mdl-38781085
ABSTRACT
Accessing versatile C(sp3)-C(sp3) bond through the cross-electrophile coupling of two distinct etheric C-O bonds is crucial in organic synthesis but remains barely explored. Herein, we report an innovative photoinduced low-valent zirconocene catalysis enabling the reductive coupling of ethers with high activity and cross-selectivity. Mechanistic investigation suggests that photoexcitation of low-valent zirconocene facilitates the C(sp3)-O bond scission of benzylic ethers, leading to the benzylic radicals intermediate via a single-electron reduction pathway. The subsequent recombination of this benzylic radical with the Zr center followed by carbomagnesiation generates benzylic Grignard reagents for downstream coupling with aliphatic ethers through an SN2-like mechanism. In application, a wide range of ethers readily in situ derived from aldehydes and ketones becomes feasible with high functional group compatibility as well as excellent cross-selectivity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article