An efficient and universal parallel algorithm for high-dimensional quantum dynamics in poly-atomic reactions.
J Chem Phys
; 160(20)2024 May 28.
Article
em En
| MEDLINE
| ID: mdl-38785279
ABSTRACT
This study presents a parallel algorithm for high-dimensional quantum dynamics simulations in poly atomic reactions, integrating distributed- and shared-memory models. The distributions of the wave function and potential energy matrix across message passing interface processes are based on bundled radial and angular dimensions, with implementations featuring either two- or one-sided communication schemes. Using realistic parameters for the H + NH3 reaction, performance assessment reveals linear scalability, exceeding 90% efficiency with up to 600 processors. In addition, owing to the universal and concise structure, the algorithm demonstrates remarkable extensibility to diverse reaction systems, as demonstrated by successes with six-atom and four-atom reactions. This work establishes a robust foundation for high-dimensional dynamics studies, showcasing the algorithm's efficiency, scalability, and adaptability. The algorithm's potential as a valuable tool for unraveling quantum dynamics complexities is underscored, paving the way for future advancements in the field.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Chem Phys
Ano de publicação:
2024
Tipo de documento:
Article
País de publicação:
Estados Unidos