Your browser doesn't support javascript.
loading
Catalytic Activity of 2-Imino-1,10-phenthrolyl Fe/Co Complexes via Linear Machine Learning.
Sadiq, Zubair; Yang, Wenhong; Meraz, Md Mostakim; Yang, Weisheng; Sun, Wen-Hua.
Afiliação
  • Sadiq Z; Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Yang W; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Meraz MM; PetroChina Petrochemical Research Institute, Beijing, 102206, China.
  • Yang W; Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  • Sun WH; University of Chinese Academy of Sciences, Beijing 100049, China.
Molecules ; 29(10)2024 May 15.
Article em En | MEDLINE | ID: mdl-38792174
ABSTRACT
In anticipation of the correlations between catalyst structures and their properties, the catalytic activities of 2-imino-1,10-phenanthrolyl iron and cobalt metal complexes are quantitatively investigated via linear machine learning (ML) algorithms. Comparatively, the Ridge Regression (RR) model has captured more robust predictive performance compared with other linear algorithms, with a correlation coefficient value of R2= 0.952 and a cross-validation value of Q2= 0.871. It shows that different algorithms select distinct types of descriptors, depending on the importance of descriptors. Through the interpretation of the RR model, the catalytic activity is potentially related to the steric effect of substituents and negative charged groups. This study refines descriptor selection for accurate modeling, providing insights into the variation principle of catalytic activity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Suíça