Your browser doesn't support javascript.
loading
mosGraphGen: a novel tool to generate multi-omics signaling graphs to facilitate integrative and interpretable graph AI model development.
bioRxiv ; 2024 Aug 27.
Article em En | MEDLINE | ID: mdl-38798349
ABSTRACT
Multi-omics data, i.e., genomics, epigenomics, transcriptomics, proteomics, characterize cellular complex signaling systems from multi-level and multi-view and provide a holistic view of complex cellular signaling pathways. However, it remains challenging to integrate and interpret multi-omics data for mining key disease targets and signaling pathways. Graph AI models have been widely used to analyze graph-structure datasets, and are ideal for integrative multi-omics data analysis because they can naturally integrate and represent multi-omics data as a biologically meaningful multi-level signaling graph and interpret multi-omics data via graph node and edge ranking analysis. However, it is non-trivial for graph-AI model developers to pre-analyze multi-omics data and convert the data into biologically meaningful graphs, which can be directly fed into graph-AI models. To resolve this challenge, we developed mosGraphGen (multi-omics signaling graph generator), generating Multi-omics Signaling graphs (mos-graph) of individual samples by mapping multi-omics data onto a biologically meaningful multi-level background signaling network with data normalization by aggregating measurements and aligning to the reference genome. With mosGraphGen, AI model developers can directly apply and evaluate their models using these mos-graphs. In the results, mosGraphGen was used and illustrated using two widely used multi-omics datasets of TCGA and Alzheimer's disease (AD) samples. The code of mosGraphGen is open-source and publicly available via GitHub https//github.com/FuhaiLiAiLab/mosGraphGen.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos