DIPO: Differentiable Parallel Operation Blocks for Surgical Neural Architecture Search.
IEEE J Biomed Health Inform
; 28(9): 5540-5550, 2024 Sep.
Article
em En
| MEDLINE
| ID: mdl-38805333
ABSTRACT
Deep learning has been used across a large number of computer vision tasks, however designing the network architectures for each task is time consuming. Neural Architecture Search (NAS) promises to automatically build neural networks, optimised for the given task and dataset. However, most NAS methods are constrained to a specific macro-architecture design which makes it hard to apply to different tasks (classification, detection, segmentation). Following the work in Differentiable NAS (DNAS), we present a simple and efficient NAS method, Differentiable Parallel Operation (DIPO), that constructs a local search space in the form of a DIPO block, and can easily be applied to any convolutional network by injecting it in-place of the convolutions. The DIPO block's internal architecture and parameters are automatically optimised end-to-end for each task. We demonstrate the flexibility of our approach by applying DIPO to 4 model architectures (U-Net, HRNET, KAPAO and YOLOX) across different surgical tasks (surgical scene segmentation, surgical instrument detection, and surgical instrument pose estimation) and evaluated across 5 datasets. Results show significant improvements in surgical scene segmentation (+10.5% in CholecSeg8K, +13.2% in CaDIS), instrument detection (+1.5% in ROBUST-MIS, +5.3% in RoboKP), and instrument pose estimation (+9.8% in RoboKP).
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Processamento de Imagem Assistida por Computador
/
Redes Neurais de Computação
/
Aprendizado Profundo
Limite:
Humans
Idioma:
En
Revista:
IEEE J Biomed Health Inform
Ano de publicação:
2024
Tipo de documento:
Article
País de publicação:
Estados Unidos