Your browser doesn't support javascript.
loading
tRNA-derived small RNA (tsr007330) regulates myocardial fibrosis after myocardial infarction through NAT10-mediated ac4C acetylation of EGR3 mRNA.
Hao, Yan; Li, Bohan; Yin, Feiya; Liu, Wei.
Afiliação
  • Hao Y; Harbin Medical University, Harbin, Heilongjiang 150001, China; Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
  • Li B; Harbin Medical University, Harbin, Heilongjiang 150001, China.
  • Yin F; University of Sydney, NSW 2006, Australia.
  • Liu W; Harbin Medical University, Harbin, Heilongjiang 150001, China; Department of Geriatric Cardiovascular Division, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China. Electronic address: doctor_liuwei@126.com
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167267, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38810917
ABSTRACT
Small non-coding ribonucleic acids (sncRNAs) play an important role in cell regulation and are closely related to the pathogenesis of heart diseases. However, the role and molecular mechanism of transfer RNA-derived small RNAs (tsRNAs) in myocardial fibrosis after myocardial infarction (MI) remain unknown. In this study, we identified and validated sncRNAs (mainly miRNA and tsRNA) associated with myocardial fibrosis after MI through PANDORA sequencing of rat myocardial tissue. As a key enzyme of N4-acetylcytidine (ac4C) acetylation modification, N-acetyltransferase 10 (NAT10) plays an important role in regulating messenger RNA (mRNA) stability and translation efficiency. We found that NAT10 is highly expressed in infarcted myocardial tissue, and the results of acetylated RNA immunoprecipitation sequencing (acRIP-seq) analysis suggest that early growth response 3 (EGR3) may be an important molecule in the pathogenesis of NAT10-mediated myocardial fibrosis. Both in vivo and in vitro experiments have shown that inhibition of NAT10 can reduce the expression of EGR3 and alleviate myocardial fibrosis after MI. tsRNA can participate in gene regulation by inhibiting target genes. The expression of tsr007330 was decreased in myocardial infarction tissue. We found that overexpression of tsr007330 in rat myocardial tissue could antagonize NAT10, improve myocardial function in MI and alleviate myocardial fibrosis. In conclusion, tsRNAs (rno-tsr007330) may regulate the occurrence of myocardial fibrosis by regulating NAT10-mediated EGR3 mRNA acetylation. This study provides new insights into the improvement of myocardial fibrosis after MI by targeting tsRNA therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infarto do Miocárdio Limite: Animals / Humans / Male Idioma: En Revista: Biochim Biophys Acta Mol Basis Dis Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Infarto do Miocárdio Limite: Animals / Humans / Male Idioma: En Revista: Biochim Biophys Acta Mol Basis Dis Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China