Your browser doesn't support javascript.
loading
A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits.
Wietek, Jonas; Nozownik, Adrianna; Pulin, Mauro; Saraf-Sinik, Inbar; Matosevich, Noa; Gowrishankar, Raajaram; Gat, Asaf; Malan, Daniela; Brown, Bobbie J; Dine, Julien; Imambocus, Bibi Nusreen; Levy, Rivka; Sauter, Kathrin; Litvin, Anna; Regev, Noa; Subramaniam, Suraj; Abrera, Khalid; Summarli, Dustin; Goren, Eva Madeline; Mizrachi, Gili; Bitton, Eyal; Benjamin, Asaf; Copits, Bryan A; Sasse, Philipp; Rost, Benjamin R; Schmitz, Dietmar; Bruchas, Michael R; Soba, Peter; Oren-Suissa, Meital; Nir, Yuval; Wiegert, J Simon; Yizhar, Ofer.
Afiliação
  • Wietek J; Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel. jonas.wietek@gmail.com.
  • Nozownik A; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel. jonas.wietek@gmail.com.
  • Pulin M; Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany. jonas.wietek@gmail.com.
  • Saraf-Sinik I; Center for Molecular Neurobiology, Hamburg, Germany.
  • Matosevich N; Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France.
  • Gowrishankar R; Center for Molecular Neurobiology, Hamburg, Germany.
  • Gat A; Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Malan D; Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Brown BJ; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
  • Dine J; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
  • Imambocus BN; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
  • Levy R; Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA.
  • Sauter K; Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Litvin A; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
  • Regev N; Institut für Physiologie I, University of Bonn, Bonn, Germany.
  • Subramaniam S; Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
  • Abrera K; Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Summarli D; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
  • Goren EM; Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany.
  • Mizrachi G; LIMES-Institute, University of Bonn, Bonn, Germany.
  • Bitton E; Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Benjamin A; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
  • Copits BA; Center for Molecular Neurobiology, Hamburg, Germany.
  • Sasse P; Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Rost BR; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
  • Schmitz D; Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel.
  • Bruchas MR; Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
  • Soba P; Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
  • Oren-Suissa M; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
  • Nir Y; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
  • Wiegert JS; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
  • Yizhar O; University of Michigan, Ann Arbor, MI, USA.
Nat Methods ; 21(7): 1275-1287, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38811857
ABSTRACT
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Optogenética / Neurônios Limite: Animals / Humans Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Optogenética / Neurônios Limite: Animals / Humans Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Israel