Your browser doesn't support javascript.
loading
[Ginsenoside Rg_1 ameliorates OGD/R-induced PC12 cell injury by inhibiting autography via IRE1-JNK-CHOP pathway].
Li, Yu-Qing; Wei, Liang-Li; Yuan, Yu-Qi; Yang, Zi-Teng; Wang, Ning; Cai, Biao; Wang, Guang-Yun.
Afiliação
  • Li YQ; College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei 230012, China.
  • Wei LL; College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei 230012, China.
  • Yuan YQ; College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei 230012, China.
  • Yang ZT; College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012, China.
  • Wang N; College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012, China.
  • Cai B; College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei 230012, China.
  • Wang GY; College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei 230012, China.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2745-2753, 2024 May.
Article em Zh | MEDLINE | ID: mdl-38812175
ABSTRACT
This study investigated the protective effect of ginsenoside Rg_1(GRg_1) on oxygen and glucose deprivation/reoxygenation(OGD/R)-injured rat adrenal pheochromocytoma(PC12) cells and whether the underlying mechanism was related to the regulation of inositol-requiring enzyme 1(IRE1)-c-Jun N-terminal kinase(JNK)-C/EBP homologous protein(CHOP) signaling pathway. An OGD/R model was established in PC12 cells, and PC12 cells were randomly classified into control, model, OGD/R+GRg_1(0.1, 1, 10 µmol·L~(-1)), OGD/R+GRg_1+rapamycin(autophagy agonist), OGD/R+GRg_1+3-methyladenine(3-MA,autophagy inhibitor), OGD/R+GRg_1+tunicamycin(endoplasmic reticulum stress agonist), OGD/R+GRg_1+4-phenylbutyric acid(4-PBA, endoplasmic reticulum stress inhibitor), and OGD/R+GRg_1+3,5-dibromosalicylaldehyde(DBSA, IRE1 inhibitor) groups. Except the control group, the other groups were subjected to OGD/R treatment, i.e., oxygen and glucose deprivation for 6 h followed by reoxygenation for 6 h. Cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide(MTT) assay. Apoptosis was detected by Hoechst 33342 staining, and the fluorescence intensity of autophagosomes by the monodansylcadaverine(MDC) assay. Western blot was employed to determine the expression of autophagy-related proteins(Beclin1, LC3-Ⅱ, and p62) and the pathway-related proteins [IRE1, p-IRE1, JNK, p-JNK, glucose-regulated protein 78(GRP78), and CHOP]. The results showed that GRg_1 dose-dependently increased the viability of PC12 cells and down-regulated the expression of Beclin1, LC3-Ⅱ, p-IRE1, p-JNK, GRP78, and CHOP, compared with the model group. Furthermore, GRg_1 decreased the apoptosis rate and MDC fluorescence intensity and up-regulated the expression of p62 protein. Compared with the OGD/R+GRg_1(10 µmol·L~(-1)) group, OGD/R+GRg_1+rapamycin and OGD/R+GRg_1+tunicamycin groups showed increased apoptosis rate and MDC fluorescence intensity, up-regulated protein levels of Beclin1, LC3-Ⅱ, p-IRE1, p-JNK, GRP78, and CHOP, decreased relative cell survival rate, and down-regulated protein level of p62. The 3-MA, 4-PBA, and DBSA groups exerted the opposite effects. Taken together, GRg_1 may ameliorate OGD/R-induced PC12 cell injury by inhibiting autophagy via the IRE1-JNK-CHOP pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Apoptose / Ginsenosídeos / Fator de Transcrição CHOP / Glucose Limite: Animals Idioma: Zh Revista: Zhongguo Zhong Yao Za Zhi Assunto da revista: FARMACOLOGIA / TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Apoptose / Ginsenosídeos / Fator de Transcrição CHOP / Glucose Limite: Animals Idioma: Zh Revista: Zhongguo Zhong Yao Za Zhi Assunto da revista: FARMACOLOGIA / TERAPIAS COMPLEMENTARES Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China