Your browser doesn't support javascript.
loading
High fidelity detection of miRNAs from complex physiological samples through electrochemical nanosensors empowered by proximity catalysis and magnetic separation.
Tang, Shuqi; Xie, Xiyue; Li, Lin; Zhou, Luoli; Xing, Yuxin; Chen, Yuhua; Cai, Kaiyong; Li, Fan; Zhang, Jixi.
Afiliação
  • Tang S; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
  • Xie X; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
  • Li L; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
  • Zhou L; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
  • Xing Y; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
  • Chen Y; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
  • Cai K; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
  • Li F; Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China. Electronic address: lf628@163.com.
  • Zhang J; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China. Electronic address: jixizhang@cqu.edu.cn.
Biosens Bioelectron ; 260: 116435, 2024 Sep 15.
Article em En | MEDLINE | ID: mdl-38820724
ABSTRACT
Electrochemical detection of miRNA biomarkers in complex physiological samples holds great promise for accurate evaluation of tumor burden in the perioperative period, yet limited by reproducibility and bias issues. Here, nanosensors installed with hybrid probes that responsively release catalytic DNAzymes (G-quadruplexes/hemin) were developed to solve the fidelity challenge in an immobilization-free detection. miRNA targets triggered toehold-mediated strand displacement reactions on the sensor surface and resulted in amplified shedding of DNAzymes. Subsequently, the interference background was removed by Fe3O4 core-facilitated magnetic separation. Binding aptamers of the electrochemical reporter (dopamine) were tethered closely to the catalytic units for boosting H2O2-mediated oxidation through proximity catalysis. The one-to-many conversion by dual amplification from biological-chemical catalysis facilitated sufficient homogeneous sensing signals on electrodes. Thereby, the nanosensor exhibited a low detection limit (2.08 fM), and high reproducibility (relative standard deviation of 1.99%). Most importantly, smaller variations (RSD of 0.51-1.04%) of quantified miRNAs were observed for detection from cell lysates, multiplexed detection from unprocessed serum, and successful discrimination of small upregulations in lysates of tumor tissue samples. The nanosensor showed superior diagnostic performance with an area under curve (AUC) of 0.97 and 94% accuracy in classifying breast cancer patients and healthy donors. These findings demonstrated the synergy of signal amplification and interference removal in achieving high-fidelity miRNA detection for practical clinical applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / DNA Catalítico / MicroRNAs / Técnicas Eletroquímicas / Limite de Detecção Limite: Female / Humans Idioma: En Revista: Biosens Bioelectron Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / DNA Catalítico / MicroRNAs / Técnicas Eletroquímicas / Limite de Detecção Limite: Female / Humans Idioma: En Revista: Biosens Bioelectron Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China