Your browser doesn't support javascript.
loading
Metabolomic analysis reveals Ligilactobacillus salivarius CCFM 1266 fermentation improves dairy product quality.
Yan, Shikai; Huang, Pan; Yu, Leilei; Tian, Fengwei; Zhao, Jianxin; Chen, Wei; Zhai, Qixiao.
Afiliação
  • Yan S; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
  • Huang P; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
  • Yu L; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
  • Tian F; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
  • Zhao J; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
  • Chen W; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
  • Zhai Q; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address: zhaiqixiao@jiangnan.edu.cn.
Food Res Int ; 188: 114309, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38823823
ABSTRACT
Previous studies have demonstrated that Ligilactobacillus salivarius CCFM 1266 exhibits anti-inflammatory properties and the capability to synthesize niacin. This study aimed to investigate the fermentative abilities of L. salivarius CCFM 1266 in fermented milk. Metabonomic analysis revealed that fermentation by L. salivarius CCFM 1266 altered volatile flavor compounds and metabolite profiles, including heptanal, nonanal, and increased niacin production. Genomic investigations confirmed that L. salivarius CCFM 1266 possess essential genes for the metabolism of fructose and mannose, affirming its proficiency in utilizing fructooligosaccharides and mannan oligosaccharides. The addition of fructooligosaccharides and mannan oligosaccharides during the fermentation process significantly facilitated the proliferation of L. salivarius CCFM 1266 in fermented milk, with growth exceeding 107 colony-forming units (CFU)/mL. This intervention not only augmented the microbial density but also modified the metabolite composition of fermented milk, resulting in an elevated presence of advantageous flavor compounds such as nonanal, 2,3-pentanedione, and 3-methyl-2-butanone. However, its influence on improving the texture of fermented milk was observed to be minimal. Co-fermentation of L. salivarius CCFM 1266 with commercial fermentation starters indicated that L. salivarius CCFM 1266 was compatible, similarly altering metabolite composition and increasing niacin content in fermented milk. In summary, the findings suggest that L. salivarius CCFM 1266 holds substantial promise as an adjunctive fermentation starter, capable of enhancing the nutritional diversity of fermented milk products.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Fermentados do Leite / Metabolômica / Fermentação / Ligilactobacillus salivarius Limite: Animals Idioma: En Revista: Food Res Int Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Produtos Fermentados do Leite / Metabolômica / Fermentação / Ligilactobacillus salivarius Limite: Animals Idioma: En Revista: Food Res Int Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Canadá