Machine learning cryptography methods for IoT in healthcare.
BMC Med Inform Decis Mak
; 24(1): 153, 2024 Jun 04.
Article
em En
| MEDLINE
| ID: mdl-38831390
ABSTRACT
BACKGROUND:
The increased application of Internet of Things (IoT) in healthcare, has fueled concerns regarding the security and privacy of patient data. Lightweight Cryptography (LWC) algorithms can be seen as a potential solution to address this concern. Due to the high variation of LWC, the primary objective of this study was to identify a suitable yet effective algorithm for securing sensitive patient information on IoT devices.METHODS:
This study evaluates the performance of eight LWC algorithms-AES, PRESENT, MSEA, LEA, XTEA, SIMON, PRINCE, and RECTANGLE-using machine learning models. Experiments were conducted on a Raspberry Pi 3 microcontroller using 16 KB to 2048 KB files. Machine learning models were trained and tested for each LWC algorithm and their performance was evaluated based using precision, recall, F1-score, and accuracy metrics.RESULTS:
The study analyzed the encryption/decryption execution time, energy consumption, memory usage, and throughput of eight LWC algorithms. The RECTANGLE algorithm was identified as the most suitable and efficient LWC algorithm for IoT in healthcare due to its speed, efficiency, simplicity, and flexibility.CONCLUSIONS:
This research addresses security and privacy concerns in IoT healthcare and identifies key performance factors of LWC algorithms utilizing the SLR research methodology. Furthermore, the study provides insights into the optimal choice of LWC algorithm for enhancing privacy and security in IoT healthcare environments.Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Segurança Computacional
/
Aprendizado de Máquina
/
Internet das Coisas
Limite:
Humans
Idioma:
En
Revista:
BMC Med Inform Decis Mak
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Nova Zelândia
País de publicação:
Reino Unido