Your browser doesn't support javascript.
loading
Advanced methods for gene network identification and noise decomposition from single-cell data.
Fang, Zhou; Gupta, Ankit; Kumar, Sant; Khammash, Mustafa.
Afiliação
  • Fang Z; Department of Biosystems Science and Engineering, ETH Zurich, CH-4056, Basel, Switzerland.
  • Gupta A; Department of Biosystems Science and Engineering, ETH Zurich, CH-4056, Basel, Switzerland.
  • Kumar S; Department of Biosystems Science and Engineering, ETH Zurich, CH-4056, Basel, Switzerland.
  • Khammash M; Department of Biosystems Science and Engineering, ETH Zurich, CH-4056, Basel, Switzerland. mustafa.khammash@bsse.ethz.ch.
Nat Commun ; 15(1): 4911, 2024 Jun 08.
Article em En | MEDLINE | ID: mdl-38851792
ABSTRACT
Central to analyzing noisy gene expression systems is solving the Chemical Master Equation (CME), which characterizes the probability evolution of the reacting species' copy numbers. Solving CMEs for high-dimensional systems suffers from the curse of dimensionality. Here, we propose a computational method for improved scalability through a divide-and-conquer strategy that optimally decomposes the whole system into a leader system and several conditionally independent follower subsystems. The CME is solved by combining Monte Carlo estimation for the leader system with stochastic filtering procedures for the follower subsystems. We demonstrate this method with high-dimensional numerical examples and apply it to identify a yeast transcription system at the single-cell resolution, leveraging mRNA time-course experimental data. The identification results enable an accurate examination of the heterogeneity in rate parameters among isogenic cells. To validate this result, we develop a noise decomposition technique exploiting time-course data but requiring no supplementary components, e.g., dual-reporters.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Redes Reguladoras de Genes / Análise de Célula Única Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Redes Reguladoras de Genes / Análise de Célula Única Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Suíça