Projected algebraic reconstruction technique-network for high-fidelity diffuse fluorescence tomography reconstruction.
J Opt Soc Am A Opt Image Sci Vis
; 41(6): 988-999, 2024 Jun 01.
Article
em En
| MEDLINE
| ID: mdl-38856406
ABSTRACT
We propose a model-driven projected algebraic reconstruction technique (PART)-network (PART-Net) that leverages the advantages of the traditional model-based method and the neural network to improve the imaging quality of diffuse fluorescence tomography. In this algorithm, nonnegative prior information is incorporated into the ART iteration process to better guide the optimization process, and thereby improve imaging quality. On this basis, PART in conjunction with a residual convolutional neural network is further proposed to obtain high-fidelity image reconstruction. The numerical simulation results demonstrate that the PART-Net algorithm effectively improves noise robustness and reconstruction accuracy by at least 1-2 times and exhibits superiority in spatial resolution and quantification, especially for a small-sized target (r=2m m), compared with the traditional ART algorithm. Furthermore, the phantom and in vivo experiments verify the effectiveness of the PART-Net, suggesting strong generalization capability and a great potential for practical applications.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Opt Soc Am A Opt Image Sci Vis
Assunto da revista:
OFTALMOLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de publicação:
Estados Unidos