Your browser doesn't support javascript.
loading
A Monte Carlo simulation study of a Janus discotic liquid crystal droplet.
Llanas-García, Andrea H; Salgado-Blanco, Daniel.
Afiliação
  • Llanas-García AH; División de Materiales Avanzados, Instituto Potosino de Investigación Científica y Tecnológica, A.C, Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, S. L. P. 78216, Mexico.
  • Salgado-Blanco D; Investigadoras e Investigadores por México, CONAHCYT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, A.C, Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, S. L. P. 78216, Mexico.
J Phys Condens Matter ; 36(37)2024 Jun 20.
Article em En | MEDLINE | ID: mdl-38857602
ABSTRACT
The study of discotic liquid crystals (DLCs) under spherical confinement has gained considerable significance due to its relevance in the design and optimization of advanced materials with tailored properties. The unique characteristics of DLC fluids, coupled with confinement within a spherical Janus surface, offer a compelling avenue for exploring novel behaviors and emergent phenomena. In this study, Monte Carlo simulations within the NpT ensemble are employed to investigate the behavior of a DLC fluid confined by a spherical Janus surface. The Janus surface is characterized by distinct hemispheres, with one promoting homeotropic (face-on) anchoring and the other planar (edge-on) anchoring. Our analysis reveals the emergence of two topological defects one exclusively on the edge-anchoring hemisphere and the other at the boundary of both anchorings. Each topological defect possessing a topological charge ofk= +1/2. We observe that as the temperature transitions the central region of the droplet into a nematic phase, a disclination line forms, linking the two surface defects. By investigating droplets of three different sizes, we confirm that the isotropic-nematic transition is first-order for the larger droplet studied. However, this transition becomes continuous under strong confinement conditions. In contrast, the nematic-columnar transition remains first order even for smaller systems.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Condens Matter Assunto da revista: BIOFISICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: México