Your browser doesn't support javascript.
loading
Microglial apolipoprotein E particles contribute to neuronal senescence and synaptotoxicity.
Wang, Na; Cai, Lujian; Pei, Xinyu; Lin, Zhihao; Huang, Lihong; Liang, Chensi; Wei, Min; Shao, Lin; Guo, Tiantian; Huang, Fang; Luo, Hong; Zheng, Honghua; Chen, Xiao-Fen; Leng, Lige; Zhang, Yun-Wu; Wang, Xin; Zhang, Jie; Guo, Kai; Wang, Zhanxiang; Zhang, Hongsheng; Zhao, Yingjun; Xu, Huaxi.
Afiliação
  • Wang N; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Cai L; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Pei X; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Lin Z; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Huang L; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Liang C; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China.
  • Wei M; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Shao L; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Guo T; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Huang F; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Luo H; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China.
  • Zheng H; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing 400016, China.
  • Chen XF; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Leng L; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Zhang YW; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Wang X; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Zhang J; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Guo K; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Wang Z; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361102, China.
  • Zhang H; Center for Brain Sciences, First Affiliated Hospital of Xiamen University, Institute of Neuroscience, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
  • Zhao Y; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400016, China.
  • Xu H; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing 400016, China.
iScience ; 27(6): 110006, 2024 Jun 21.
Article em En | MEDLINE | ID: mdl-38868202
ABSTRACT
Apolipoprotein E (apoE) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Microglia exhibit a substantial upregulation of apoE in AD-associated circumstances, despite astrocytes being the primary source of apoE expression and secretion in the brain. Although the role of astrocytic apoE in the brain has been extensively investigated, it remains unclear that whether and how apoE particles generated from astrocytes and microglia differ in biological characteristic and function. Here, we demonstrate the differences in size between apoE particles generated from microglia and astrocytes. Microglial apoE particles impair neurite growth and synapses, and promote neuronal senescence, whereas depletion of GPNMB (glycoprotein non-metastatic melanoma protein B) in microglial apoE particles mitigated these deleterious effects. In addition, human APOE4-expressing microglia are more neurotoxic than APOE3-bearing microglia. For the first time, these results offer concrete evidence that apoE particles produced by microglia are involved in neuronal senescence and toxicity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IScience Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IScience Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos