Your browser doesn't support javascript.
loading
Hyperbaric oxygen treatment reveals spatiotemporal OXPHOS plasticity in the porcine heart.
Heidler, Juliana; Cabrera-Orefice, Alfredo; Wittig, Ilka; Heyne, Estelle; Tomczak, Jan-Niklas; Petersen, Bjoern; Henze, Dirk; Pohjoismäki, Jaakko L O; Szibor, Marten.
Afiliação
  • Heidler J; Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
  • Cabrera-Orefice A; Experimental Vascular Surgery, University Clinic of Vascular Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria.
  • Wittig I; Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
  • Heyne E; Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
  • Tomczak JN; Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich Schiller University of Jena, 07747 Jena, Germany.
  • Petersen B; Functional Proteomics, Institute of Cardiovascular Physiology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
  • Henze D; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), 31535 Mariensee, Germany.
  • Pohjoismäki JLO; Praxis für Anästhesiologie, Dr. Henze & Partner GbR, 06116 Halle (Saale), Germany.
  • Szibor M; Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland.
PNAS Nexus ; 3(6): pgae210, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38881840
ABSTRACT
Cardiomyocytes meet their high ATP demand almost exclusively by oxidative phosphorylation (OXPHOS). Adequate oxygen supply is an essential prerequisite to keep OXPHOS operational. At least two spatially distinct mitochondrial subpopulations facilitate OXPHOS in cardiomyocytes, i.e. subsarcolemmal (SSM) and interfibrillar mitochondria (IFM). Their intracellular localization below the sarcolemma or buried deep between the sarcomeres suggests different oxygen availability. Here, we studied SSM and IFM isolated from piglet hearts and found significantly lower activities of electron transport chain enzymes and F1FO-ATP synthase in IFM, indicative for compromised energy metabolism. To test the contribution of oxygen availability to this outcome, we ventilated piglets under hyperbaric hyperoxic (HBO) conditions for 240 min. HBO treatment raised OXPHOS enzyme activities in IFM to the level of SSM. Complexome profiling analysis revealed that a high proportion of the F1FO-ATP synthase in the IFM was in a disassembled state prior to the HBO treatment. Upon increased oxygen availability, the enzyme was found to be largely assembled, which may account for the observed increase in OXPHOS complex activities. Although HBO also induced transcription of genes involved in mitochondrial biogenesis, a full proteome analysis revealed only minimal alterations, meaning that HBO-mediated tissue remodeling is an unlikely cause for the observed differences in OXPHOS. We conclude that a previously unrecognized oxygen-regulated mechanism endows cardiac OXPHOS with spatiotemporal plasticity that may underlie the enormous metabolic and contractile adaptability of the heart.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PNAS Nexus Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: PNAS Nexus Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Reino Unido