Your browser doesn't support javascript.
loading
δ-containing GABA A receptors on parvalbumin interneurons modulate neuronal excitability and network dynamics in the mouse medial prefrontal cortex.
bioRxiv ; 2024 Jun 14.
Article em En | MEDLINE | ID: mdl-38915641
ABSTRACT
In medial prefrontal cortex (mPFC), fast-spiking parvalbumin (PV) interneurons regulate excitability and microcircuit oscillatory activity important for cognition. Although PV interneurons inhibit pyramidal neurons, they themselves express δ subunits of GABAA receptors important for slow inhibition. However, the specific contribution of δ-containing GABAA receptors to the function of PV interneurons in mPFC is unclear. We explored cellular, synaptic, and local-circuit activity in PV interneurons and pyramidal neurons in mouse mPFC after selectively deleting δ subunits in PV interneurons (cKO mice). In current-clamp recordings, cKO PV interneurons exhibited a higher frequency of action potentials and higher input resistance than wild type (WT) PV interneurons. Picrotoxin increased firing and GABA decreased firing in WT PV interneurons but not in cKO PV interneurons. The δ-preferring agonist THIP reduced spontaneous inhibitory postsynaptic currents in WT pyramidal neurons but not in cKO pyramidal neurons. In WT slices, depolarizing the network with 400 nM kainate increased firing of pyramidal neurons but had little effect on PV interneuron firing. By contrast, in cKO slices kainate recruited PV interneurons at the expense of pyramidal neurons. At the population level, kainate induced broadband increases in local field potentials in WT but not cKO slices. These results on cells and the network can be understood through increased excitability of cKO PV interneurons. In summary, our study demonstrates that δ-containing GABAA receptors in mPFC PV interneurons play a crucial role in regulating their excitability and the phasic inhibition of pyramidal neurons, elucidating intricate mechanisms governing cortical circuitry. Significance statement By selectively deleting δ-containing GABAA receptors in PV interneurons, we demonstrate the importance of these receptors on PV interneuron excitability, synaptic inhibition of pyramidal neurons, and circuit function.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2024 Tipo de documento: Article