Your browser doesn't support javascript.
loading
Revitalizing Convolutional Network for Image Restoration.
Article em En | MEDLINE | ID: mdl-38917284
ABSTRACT
Image restoration aims to reconstruct a high-quality image from its corrupted version, playing essential roles in many scenarios. Recent years have witnessed a paradigm shift in image restoration from convolutional neural networks (CNNs) to Transformerbased models due to their powerful ability to model long-range pixel interactions. In this paper, we explore the potential of CNNs for image restoration and show that the proposed simple convolutional network architecture, termed ConvIR, can perform on par with or better than the Transformer counterparts. By re-examing the characteristics of advanced image restoration algorithms, we discover several key factors leading to the performance improvement of restoration models. This motivates us to develop a novel network for image restoration based on cheap convolution operators. Comprehensive experiments demonstrate that our ConvIR delivers state-ofthe- art performance with low computation complexity among 20 benchmark datasets on five representative image restoration tasks, including image dehazing, image motion/defocus deblurring, image deraining, and image desnowing.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IEEE Trans Pattern Anal Mach Intell Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos