Genome-wide CRISPR screen identifies neddylation as a regulator of neuronal aging and AD neurodegeneration.
Cell Stem Cell
; 31(8): 1162-1174.e8, 2024 Aug 01.
Article
em En
| MEDLINE
| ID: mdl-38917806
ABSTRACT
Aging is the biggest risk factor for the development of Alzheimer's disease (AD). Here, we performed a whole-genome CRISPR screen to identify regulators of neuronal age and show that the neddylation pathway regulates both cellular age and AD neurodegeneration in a human stem cell model. Specifically, we demonstrate that blocking neddylation increased cellular hallmarks of aging and led to an increase in Tau aggregation and phosphorylation in neurons carrying the APPswe/swe mutation. Aged APPswe/swe but not isogenic control neurons also showed a progressive decrease in viability. Selective neuronal loss upon neddylation inhibition was similarly observed in other isogenic AD and in Parkinson's disease (PD) models, including PSENM146V/M146V cortical and LRRK2G2019S/G2019S midbrain dopamine neurons, respectively. This study indicates that cellular aging can reveal late-onset disease phenotypes, identifies new potential targets to modulate AD progression, and describes a strategy to program age-associated phenotypes into stem cell models of disease.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Doença de Alzheimer
Limite:
Humans
Idioma:
En
Revista:
Cell Stem Cell
Ano de publicação:
2024
Tipo de documento:
Article
País de publicação:
Estados Unidos