Your browser doesn't support javascript.
loading
Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools.
Biderman, Dan; Whiteway, Matthew R; Hurwitz, Cole; Greenspan, Nicholas; Lee, Robert S; Vishnubhotla, Ankit; Warren, Richard; Pedraja, Federico; Noone, Dillon; Schartner, Michael M; Huntenburg, Julia M; Khanal, Anup; Meijer, Guido T; Noel, Jean-Paul; Pan-Vazquez, Alejandro; Socha, Karolina Z; Urai, Anne E; Cunningham, John P; Sawtell, Nathaniel B; Paninski, Liam.
Afiliação
  • Biderman D; Columbia University, New York, NY, USA. db3236@cumc.columbia.edu.
  • Whiteway MR; Columbia University, New York, NY, USA. m.whiteway@columbia.edu.
  • Hurwitz C; Columbia University, New York, NY, USA.
  • Greenspan N; Columbia University, New York, NY, USA.
  • Lee RS; Lightning.ai, New York, NY, USA.
  • Vishnubhotla A; Columbia University, New York, NY, USA.
  • Warren R; Columbia University, New York, NY, USA.
  • Pedraja F; Columbia University, New York, NY, USA.
  • Noone D; Columbia University, New York, NY, USA.
  • Schartner MM; Champalimaud Centre for the Unknown, Lisbon, Portugal.
  • Huntenburg JM; Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
  • Khanal A; University of California, Los Angeles, Los Angeles, CA, USA.
  • Meijer GT; Champalimaud Centre for the Unknown, Lisbon, Portugal.
  • Noel JP; New York University, New York, NY, USA.
  • Pan-Vazquez A; Princeton University, Princeton, NJ, USA.
  • Socha KZ; University College London, London, UK.
  • Urai AE; Leiden University, Leiden, the Netherlands.
  • Cunningham JP; Columbia University, New York, NY, USA.
  • Sawtell NB; Columbia University, New York, NY, USA.
  • Paninski L; Columbia University, New York, NY, USA.
Nat Methods ; 21(7): 1316-1328, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38918605
ABSTRACT
Contemporary pose estimation methods enable precise measurements of behavior via supervised deep learning with hand-labeled video frames. Although effective in many cases, the supervised approach requires extensive labeling and often produces outputs that are unreliable for downstream analyses. Here, we introduce 'Lightning Pose', an efficient pose estimation package with three algorithmic contributions. First, in addition to training on a few labeled video frames, we use many unlabeled videos and penalize the network whenever its predictions violate motion continuity, multiple-view geometry and posture plausibility (semi-supervised learning). Second, we introduce a network architecture that resolves occlusions by predicting pose on any given frame using surrounding unlabeled frames. Third, we refine the pose predictions post hoc by combining ensembling and Kalman smoothing. Together, these components render pose trajectories more accurate and scientifically usable. We released a cloud application that allows users to label data, train networks and process new videos directly from the browser.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Gravação em Vídeo / Algoritmos / Teorema de Bayes Limite: Animals Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Gravação em Vídeo / Algoritmos / Teorema de Bayes Limite: Animals Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos