Therapeutic intervention in neuroinflammation for neovascular ocular diseases through targeting the cGAS-STING-necroptosis pathway.
J Neuroinflammation
; 21(1): 164, 2024 Jun 25.
Article
em En
| MEDLINE
| ID: mdl-38918759
ABSTRACT
The microglia-mediated neuroinflammation have been shown to play a crucial role in the ocular pathological angiogenesis process, but specific immunotherapies for neovascular ocular diseases are still lacking. This study proposed that targeting GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) might be a novel immunotherapy for these angiogenesis diseases. We found a significant upregulation of CGAS and STING genes in the RNA-seq data derived from retinal tissues of the patients with proliferative diabetic retinopathy. In experimental models of ocular angiogenesis including laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR), the cGAS-STING pathway was activated as angiogenesis progressed. Either genetic deletion or pharmacological inhibition of STING resulted in a remarkable suppression of neovascularization in both models. Furthermore, cGAS-STING signaling was specifically activated in myeloid cells, triggering the subsequent RIP1-RIP3-MLKL pathway activation and leading to necroptosis-mediated inflammation. Notably, targeted inhibition of the cGAS-STING pathway with C-176 or SN-011 could significantly suppress pathological angiogenesis in CNV and OIR. Additionally, the combination of C-176 or SN-011 with anti-VEGF therapy led to least angiogenesis, markedly enhancing the anti-angiogenic effectiveness. Together, our findings provide compelling evidence for the importance of the cGAS-STING-necroptosis axis in pathological angiogenesis, highlighting its potential as a promising immunotherapeutic target for treating neovascular ocular diseases.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Doenças Neuroinflamatórias
/
Proteínas de Membrana
/
Camundongos Endogâmicos C57BL
/
Nucleotidiltransferases
Limite:
Animals
/
Humans
Idioma:
En
Revista:
J Neuroinflammation
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Reino Unido