Equilibrium Moisture Mediated Esterification Reaction to Achieve Over 100% Lignocellulosic Nanofibrils Yield.
Small
; 20(43): e2402777, 2024 Oct.
Article
em En
| MEDLINE
| ID: mdl-38934355
ABSTRACT
Lignocellulosic nanofibrils (LCNFs) isolation is recognized as an efficient strategy for maximizing biomass utilization. Nevertheless, achieving a 100% yield presents a formidable challenge. Here, an esterification strategy mediated by the equilibrium moisture in biomass is proposed for LCNFs preparation without the use of catalysts, resulting in a yield exceeding 100%. Different from anhydrous chemical thermomechanical pulp (CTMP0%), the presence of moisture (moisture content of 7 wt%, denoted as CTMP7%) introduces a notably distinct process for the pretreatment of CTMP, comprising the initial disintegration and the post-esterification steps. The maleic acid, generated through maleic anhydride (MA) hydrolysis, degrades the recalcitrant lignin-carbohydrate complex (LCC) structures, resulting in esterified CTMP7% (E-CTMP7%). The highly grafted esters compensate for the mass loss resulting from the partial removal of hydrolyzed lignin and hemicellulose, ensuring a high yield. Following microfluidization, favorable LCNF7% with a high yield (114.4 ± 3.0%) and a high charge content (1.74 ± 0.09 mmol g-1) can be easily produced, surpassing most previous records for LCNFs. Additionally, LCNF7% presented highly processability for filaments, films, and 3D honeycomb structures preparation. These findings provide valuable insights and guidance for achieving a high yield in the isolation of LCNFs from biomass through the mediation of equilibrium moisture.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Small
Assunto da revista:
ENGENHARIA BIOMEDICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
Canadá
País de publicação:
Alemanha