Your browser doesn't support javascript.
loading
Lithium Plating Characteristics in High Areal Capacity Li-Ion Battery Electrodes.
Kabra, Venkatesh; Carter, Rachel; Li, Mengya; Fear, Conner; Atkinson, Robert W; Love, Corey; Mukherjee, Partha P.
Afiliação
  • Kabra V; School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
  • Carter R; Chemistry Division, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
  • Li M; Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Hardin Valley Campus, Knoxville, Tennessee 37830, United States.
  • Fear C; School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
  • Atkinson RW; Excet, Inc., Springfield, Virginia 22151, United States.
  • Love C; Chemistry Division, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States.
  • Mukherjee PP; School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
ACS Appl Mater Interfaces ; 16(27): 34830-34839, 2024 Jul 10.
Article em En | MEDLINE | ID: mdl-38941578
ABSTRACT
Li-ion battery degradation and safety events are often attributed to undesirable metallic lithium plating. Since their release, Li-ion battery electrodes have been made progressively thicker to provide a higher energy density. However, the propensity for plating in these thicker pairings is not well understood. Herein, we combine an experimental plating-prone condition with robust mesoscale modeling to examine electrode pairings with capacities ranging from 2.5 to 6 mAh/cm2 and negative to positive (N/P) electrode areal capacity ratio from 0.9 to 1.8 without the need for extensive aging tests. Using both experimentation and a mesoscale model, we identify a shift from conventional high state-of-charge (SOC) type plating to high overpotential (OP) type plating as electrode thickness increases. These two plating modes have distinct morphologies, identified by optical microscopy and electrochemical signatures. We demonstrate that under operating conditions where these plating modes converge, a high propensity of plating exists, revealing the importance of predicting and avoiding this overlap for a given electrode pairing. Further, we identify that thicker electrodes, beyond a capacity of 3 mAh/cm2 or thickness >75 µm, are prone to high OP, limiting negative electrode (NE) utilization and preventing cross-sectional oversizing the NE from mitigating plating. Here, it simply contributes to added mass and volume. The experimental thermal gradient and mesoscale model either combined or independently provide techniques capable of probing performance and safety implications of mild changes to electrode design features.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos