Your browser doesn't support javascript.
loading
PGC-1α regulates endoplasmic reticulum stress in IPF-derived fibroblasts.
Xu, Qinghua; Liu, Huarui; Ding Shiwen Fan, Xiaorui; Lv, Wenting; Jiang, Yuxian; Liang, Yi; Xu, Hongyang; Dai, Jinghong.
Afiliação
  • Xu Q; Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
  • Liu H; Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
  • Ding Shiwen Fan X; Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
  • Lv W; Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
  • Jiang Y; Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
  • Liang Y; Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
  • Xu H; Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
  • Dai J; Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China. Electronic address: daijinghong@nju
Int Immunopharmacol ; 138: 112514, 2024 Sep 10.
Article em En | MEDLINE | ID: mdl-38943974
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is considered to be associated with aging. Both ER stress and the unfolded protein response (UPR) have been associated with pulmonary fibrosis via key mechanisms including AEC apoptosis, EMT, altered myofibroblast differentiation, and M2 macrophage polarization. A relationship between ER stress and aging has also been demonstrated in vitro, with increased p16 and p21 levels seen in lung epithelial cells of older IPF patients. The mechanism underlying ER stress regulation of IPF fibroblasts is still unclear. In this study, we aimed to delineate ER stress regulation in IPF-derived fibroblasts. Here, we found that ER stress markers (p-eIF2α, p-IREα, ATF6) and fibrosis markers (α-SMA and Collagen-I) were significantly increased in lung tissues of IPF patients and bleomycin-induced mouse models. Notably, the expression of PGC-1α was decreased in fibroblasts. In vivo experiments were designed using an AAV-6 vector mediated conditional PGC-1α knockout driven by a specific α-SMA promoter. Ablation of PGC-1α expression in fibroblasts promoted ER stress and supported the development of pulmonary fibrosis in a bleomycin-induced mouse model. In another experimental group, mice with conditional knockout of PGC-1α in fibroblasts and injected intraperitoneally with 4-PBA (an endoplasmic reticulum stress inhibitor) were protected from lung fibrosis. We further constructed an AAV-6 vector mediated PGC-1α overexpression model driven by a specific Collagen-I promoter. Overexpression of PGC-1α in fibroblasts suppressed ER stress and attenuated development of pulmonary fibrosis in bleomycin-induced mouse models. Taken together, this study identified PGC-1α as a promising target for developing novel therapeutic options for the treatment of lung fibrosis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilbutiratos / Bleomicina / Fibrose Pulmonar Idiopática / Estresse do Retículo Endoplasmático / Fibroblastos / Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo Limite: Animals / Female / Humans / Male Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilbutiratos / Bleomicina / Fibrose Pulmonar Idiopática / Estresse do Retículo Endoplasmático / Fibroblastos / Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo Limite: Animals / Female / Humans / Male Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Holanda