Your browser doesn't support javascript.
loading
The mechanism by which oriented polypropylene packaging alleviates postharvest 'Black Spot' in radish root (Raphanus sativus).
Lin, Zixin; Feng, Bihong; Fang, Shibei; Pang, Xi; Liang, Huafeng; Yuan, Shuzhi; Xu, Xiaodi; Zuo, Jinhua; Yue, Xiaozhen; Wang, Qing.
Afiliação
  • Lin Z; Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Scienc
  • Feng B; College of Agriculture, Guangxi University, Nanning 530004, China. Electronic address: fbh@gxu.edu.cn.
  • Fang S; Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Scienc
  • Pang X; Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Scienc
  • Liang H; Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Scienc
  • Yuan S; Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Scienc
  • Xu X; Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Scienc
  • Zuo J; Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Scienc
  • Yue X; Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Scienc
  • Wang Q; Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Vegetable Research Center, Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Scienc
J Adv Res ; 2024 Jun 28.
Article em En | MEDLINE | ID: mdl-38945295
ABSTRACT

INTRODUCTION:

The postharvest physiological disorder known as 'black spot' in radish roots (Raphanus sativus) poses a significant challenge to quality maintenance during storage, particularly under summer conditions. The cause of this disorder, however, is poorly understood.

OBJECTIVES:

Characterize the underlying causes of 'black spot' disorder in radish roots and identify strategies to delay its onset.

METHODS:

Radish roots were placed in either polyvinyl chloride (PVC) or oriented polypropylene (OPP) packaging and stored for 4 days at 30 °C. Appearance and physiological parameters were assessed and transcriptomic and metabolomic analyses were conducted to identify the key molecular and biochemical factors contributing to the disorder and strategies for delaying its onset and development.

RESULTS:

OPP packaging effectively delayed the onset of 'black spot' in radishes, potentially due to changes in phenolic and lipid metabolism. Regarding phenolic metabolism, POD and PPO activity decreased, RsCCR and RsPOD expression was downregulated, genes involved in phenols and flavonoids synthesis were upregulated and their content increased, preventing the oxidative browning of phenols and generally enhancing stress tolerance. Regarding lipid metabolism, the level of alpha-linolenic acid increased, and genes regulating cutin and wax synthesis were upregulated. Notably, high flavonoid and low ROS levels collectively inhibited RsPLA2G expression, which reduced the production of arachidonic acid, pro-inflammatory compounds (LTA4 and PGG2), and ROS, alleviating the inflammatory response and oxidative stress in radish epidermal tissues.

CONCLUSION:

PVC packaging enhanced the postharvest onset of 'black spot' in radishes, while OPP packaging delayed both its onset and development. Our study provides insights into the response of radishes to different packaging materials during storage, and the causes and host responses that either enhance or delay 'black spot' disorder onset. Further studies will be conducted to confirm the molecular and biochemical processes responsible for the onset and development of 'black spot' in radishes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Adv Res Ano de publicação: 2024 Tipo de documento: Article País de publicação: Egito

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Adv Res Ano de publicação: 2024 Tipo de documento: Article País de publicação: Egito