Your browser doesn't support javascript.
loading
Machine Learning-Assisted High-Throughput Identification and Quantification of Protein Biomarkers with Printed Heterochains.
Pan, Xiangyu; Zhang, Zeying; Yun, Yang; Zhang, Xu; Sun, Yali; Zhang, Zixuan; Wang, Huadong; Yang, Xu; Tan, Zhiyu; Yang, Yaqi; Xie, Hongfei; Bogdanov, Bogdan; Zmaga, Georgii; Senyushkin, Pavel; Wei, Xuemei; Song, Yanlin; Su, Meng.
Afiliação
  • Pan X; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
  • Zhang Z; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
  • Yun Y; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
  • Zhang X; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
  • Sun Y; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
  • Zhang Z; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
  • Wang H; Department of Clinical Laboratory, the first Medical Centre, Chinese PLA General Hospital, Beijing 100853, China.
  • Yang X; School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia.
  • Tan Z; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
  • Yang Y; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
  • Xie H; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
  • Bogdanov B; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
  • Zmaga G; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
  • Senyushkin P; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
  • Wei X; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
  • Song Y; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
  • Su M; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
J Am Chem Soc ; 146(28): 19239-19248, 2024 Jul 17.
Article em En | MEDLINE | ID: mdl-38949598
ABSTRACT
Advanced in vitro diagnosis technologies are highly desirable in early detection, prognosis, and progression monitoring of diseases. Here, we engineer a multiplex protein biosensing strategy based on the tunable liquid confinement self-assembly of multi-material heterochains, which show improved sensitivity, throughput, and accuracy compared to standard ELISA kits. By controlling the material combination and the number of ligand nanoparticles (NPs), we observe robust near-field enhancement as well as both strong electromagnetic resonance in polymer-semiconductor heterochains. In particular, their optical signals show a linear response to the coordination number of the semiconductor NPs in a wide range. Accordingly, a visible nanophotonic biosensor is developed by functionalizing antibodies on central polymer chains that can identify target proteins attached to semiconductor NPs. This allows for the specific detection of multiple protein biomarkers from healthy people and pancreatic cancer patients in one step with an ultralow detection limit (1 pg/mL). Furthermore, rapid and high-throughput quantification of protein expression levels in diverse clinical samples such as buffer, urine, and serum is achieved by combining a neural network algorithm, with an average accuracy of 97.3%. This work demonstrates that the heterochain-based biosensor is an exemplary candidate for constructing next-generation diagnostic tools and suitable for many clinical settings.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Aprendizado de Máquina Limite: Humans Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Aprendizado de Máquina Limite: Humans Idioma: En Revista: J Am Chem Soc Ano de publicação: 2024 Tipo de documento: Article País de publicação: Estados Unidos