Your browser doesn't support javascript.
loading
Notoginsenoside R1 attenuates ischemic heart failure by modulating MDM2/ß arrestin2-mediated ß2-adrenergic receptor ubiquitination.
Chen, Qi; Huang, Ziwei; Chen, Jing; Tian, Xiaoyu; Zhang, Rong; Liang, Qi; Liu, Zhongqiu; Cheng, Yuanyuan.
Afiliação
  • Chen Q; Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Universit
  • Huang Z; Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Universit
  • Chen J; Department of Cardiovascular Disease, The First Afliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
  • Tian X; Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Universit
  • Zhang R; Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Universit
  • Liang Q; Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen 518000, China. Electronic address: 450589616@qq.com.
  • Liu Z; Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Universit
  • Cheng Y; Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou Universit
Biomed Pharmacother ; 177: 117004, 2024 Jul 01.
Article em En | MEDLINE | ID: mdl-38955084
ABSTRACT
ß2 adrenergic receptor (ß2AR) is a G-protein-coupled receptor involved in cardiac protection. In chronic heart failure (CHF), persistent sympathetic nervous system activation occurs, resulting in prolonged ß2AR activation and subsequent receptor desensitization and downregulation. Notoginsenoside R1 (NGR1) has the functions of enhancing myocardial energy metabolism and mitigating myocardial fibrosis. The mechanisms of NGR1 against ischemic heart failure are unclear. A left anterior descending (LAD) artery ligation procedure was performed on C57BL/6 J mice for four weeks. From the 4th week onwards, they were treated with various doses (3, 10, 30 mg/kg/day) of NGR1. Subsequently, the impacts of NGR1 on ischemic heart failure were evaluated by assessing cardiac function, morphological changes in cardiac tissue, and the expression of atrial natriuretic peptide (ANP) and beta-myosin heavy chain (ß-MHC). H9c2 cells were protected by NGR1 when exposed to OGD/R conditions. H9c2 cells were likewise protected from OGD/R damage by NGR1. Furthermore, NGR1 increased ß2AR levels and decreased ß2AR ubiquitination. Mechanistic studies revealed that NGR1 enhanced MDM2 protein stability and increased the expression of MDM2 and ß-arrestin2 while inhibiting their interaction. Additionally, under conditions produced by OGD/R, the protective benefits of NGR1 on H9c2 cells were attenuated upon administration of the MDM2 inhibitor SP141. According to these findings, NGR1 impedes the interplay between ß-arrestin2 and MDM2, thereby preventing the ubiquitination and degradation of ß2AR to improve CHF.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomed Pharmacother Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Biomed Pharmacother Ano de publicação: 2024 Tipo de documento: Article