Your browser doesn't support javascript.
loading
Drop to Gate Nasal Drops Attenuates Sepsis-Induced Cognitive Dysfunction.
Zhuang, Yaping; Du, Xiyu; Yang, Li; Jiang, Zhaoshun; Yu, Buwei; Gu, Weidong; Cui, Wenguo; Lu, Han.
Afiliação
  • Zhuang Y; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China.
  • Du X; Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China.
  • Yang L; Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China.
  • Jiang Z; Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China.
  • Yu B; Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China.
  • Gu W; Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No. 221 Yan'an West Road, Jing'an, Shanghai, 200040, P. R. China.
  • Cui W; Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China.
  • Lu H; Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu, Shanghai, 200025, P. R. China.
Small ; : e2403564, 2024 Jul 05.
Article em En | MEDLINE | ID: mdl-38966875
ABSTRACT
Nasal administration can bypass the blood-brain barrier and directly deliver drugs to the brain, providing a non-invasive route for central nervous system (CNS) diseases. Inspired by the appearance that a gate can block the outside world and the characteristics of the sol-gel transition can form a "gate" in the nasal cavity, a Drop to Gate nasal drop (DGND) is designed to set a gate in nose, which achieves protecting role from the influence of nasal environment. The DGND demonstrates the efficiency and application prospect of delivering drugs to the brain through the N-to-B. The effective concentration of single administration is increased through the hydrophobic interaction between C8-GelMA and SRT1720 (SA), and then cross-linked under UV to form nanogel, which can respond to MMP in the inflammatory microenvironment of sepsis-induced cognitive dysfunction. Finally, the SA/nanogel is compounded into the thermogel, which can respond to the nasal cavity temperature to form DGND in situ, increasing the residence time and delivery efficiency of drugs in the nasal cavity. In vitro, the DGND alleviates lipopolysaccharides (LPS)-induced BV2 inflammation. In vivo, DGND effectively targets the nasal mucosa and deliver drugs to the brain, which activate Sirt1 to alleviate inflammation mediated by microglia and improve cognitive dysfunction in sepsis mice.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article
...