Cu2(OH)3NO3/γ-Al2O3 catalyzes Fenton-like oxidation for the advanced treatment of effluent organic matter (EfOM) in fermentation pharmaceutical wastewater: The synergy of Cu2(OH)3NO3 and γ-Al2O3.
Water Res
; 261: 122049, 2024 Sep 01.
Article
em En
| MEDLINE
| ID: mdl-38976932
ABSTRACT
The secondary effluent of fermentation pharmaceutical wastewater exhibits high chromaticity, elevated salinity, and abundant refractory effluent organic matter (EfOM), presenting significant treatment challenges and environmental threats. Herein, Cu2(OH)3NO3/γ-Al2O3 was fabricated through ultrasound-assisted impregnation and calcination to catalyze the Fenton-like oxidation for degrading organic pollutants in this secondary effluent. Under neutral conditions, with 400.00 mg/L H2O2, 8 g/L catalyst, and at 30 â, the EfOM and CODCr removal efficiencies can reach 96.90 % and 51.56 %, respectively. The Cu2(OH)3NO3/γ-Al2O3 catalyst possesses ideal reusability, maintaining CODCr, chromaticity, and EfOM removal efficiencies at 44.44 %-64.59 %, 85.45 %-93.45 %, and 61.00 %-95.00 % over 220 h in a continuous-flow catalytic oxidation system operated at room temperatures (15-25 â). Electron paramagnetic resonance results and density functional theory calculations indicate that â¢OOH may be the predominant reactive oxygen species, facilitated by the easier elongation of the OH bond in H2O2 compared to the OO bond. The adjusted electronic structure endows Cu2(OH)3NO3/γ-Al2O3 composite sites with superior catalytic selectivity for H2O2 activation compared to Cu2(OH)3NO3 single crystal sites, with γ-Al2O3 additionally facilitating H2O2 activation through electron donation. This research highlights the efficacy of Cu2(OH)3NO3/γ-Al2O3 in the advanced treatment of complex industrial wastewater, elucidating its catalytic mechanisms and potential applications.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Oxirredução
/
Poluentes Químicos da Água
/
Eliminação de Resíduos Líquidos
/
Águas Residuárias
/
Peróxido de Hidrogênio
Idioma:
En
Revista:
Water Res
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Reino Unido